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Abstract 

This study contains a comparison between the two Kalman filter and adaptive filter 

has huge importance because of it is uses in different applications such as air 

navigation planes, satellites, cameras, motions, radar, stations. Adaptive filter has 

various Application as well and important in CCTV and microphones. 
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Introduction 

The introduction to this research, which is entitled a comparison between the way 

the filters work, namely the Kalman filter and the adaptive filter, which work on the 

method of filtering and filtering the frequently used radio signals. Our daily life is 

also used in some missiles and in monitoring stations, as it is used a lot in air 

navigation in military airports we studied in this research on making a comparison 

between filters in the way to purify the signal and we also studied the difference 

between the signals. 

Kalman filters have been vital in the implementation of the navigation systems of 

U.S. Navy nuclear ballistic missile submarines, and in the guidance and navigation 
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systems of cruise missiles such as the U.S. Navy's Tomahawk missile and the U.S. 

Air Force's Air Launched Cruise Missile. They are also used in the guidance and 

navigation systems of reusable launch vehicles and the attitude control and 

navigation systems of spacecraft which dock at the International Space Station. 

This digital filter is sometimes called the Stratonovich–Kalman–Bucy filter because 

it is a special case of a more general, nonlinear filter developed somewhat earlier by 

the Soviet mathematician Ruslan Stratonovich. In fact, some of the special case linear 

filter's equations appeared in these papers by Stratonovich that were published before 

summer 1960, when Kalman met with Stratonovich during a conference in Moscow. 

The Kalman filter keeps track of the estimated state of the system and the variance 

or uncertainty of the estimate. The estimate is updated using a state transition model 

and measurements. x ^ k ∣ k − 1  denotes the estimate of the system's state at time 

step k before the k-th measurement yk has been taken into account; P k ∣ k − 1  

 

 

 

 

 

 

 

 

Figure (1): the corresponding uncertainty filters in the features and found the results for each signal 
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Problem Definition 

Our problem is provide needed military security requires to use the best filter to 

assure highest level of security, hence the need to compare between different filters 

is justified comparison between kalman filter and deal time adaptive filter will be 

done to grantee pure signal with lightest quality because of high importance of signal 

quality we need to use highly Efficient filter. 

Research Objectives   

The objectives of this  research are to make a comparison between the filters in the 

way each filter. 

Research Methodology  

To use the MATLAB program in Kalman filter and the adaptive filter applications.   

Background of the Study   

We searched in this research to obtain a comparison between two-filter Kalman filter, 

the adaptive filter and we found the advantages of each filter in the method of 

purifying the original signal. We used MATLAB program in the practical application 

and obtained the results in our research. 

Proposed Approach 

Kalman Filter and Adaptive Filter 

Kalman Filter 

The Kalman filter uses a system's dynamic model (e.g., physical laws of motion), 

known control inputs to that system, and multiple sequential measurements (such as 

from sensors) to form an estimate of the system's varying quantities (its state) that is 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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better than the estimate obtained by using only one measurement alone. As such, it 

is a common sensor fusion and data fusion algorithm.  

History 

The filter is named after Hungarian émigré Rudolf E. Kálmán, although Thorvald 

Nicolai Thiele and Peter Swerling developed a similar algorithm earlier. Richard S. 

Bucy of the University of Southern California contributed to the theory, leading to it 

sometimes being called the Kalman–Bucy filter. Stanley F. Schmidt is generally 

credited with developing the first implementation of a Kalman filter. He realized that 

the filter could be divided into two distinct parts, with one part for time periods 

between sensor outputs and another part for incorporating measurements. It was 

during a visit by Kálmán to the NASA Ames Research Center that Schmidt saw the 

applicability of Kálmán's ideas to the nonlinear problem of trajectory estimation for 

the Apollo program leading to its incorporation in the Apollo navigation computer. 

This Kalman filter was first described and partially developed in technical papers by 

Swerling (1958), Kalman (1960) and Kalman and Bucy (1961). 

The Apollo computer used 2k of magnetic core RAM and 36k wire rope [...] The 

CPU was built from ICs [...]. Clock speed was under 100 kHz [...]. The fact that the 

MIT engineers were able to pack such good software (one of the very first 

applications of the Kalman filter) into such a tiny computer is truly remarkable. 

In statistics and control theory, Kalman filtering, also known as linear quadratic 

estimation (LQE), is an algorithm that uses a series of measurements observed over 

time, containing statistical noise and other inaccuracies, and produces estimates of 

unknown variables that tend to be more accurate than those based on a single 

measurement alone, by estimating a joint probability distribution over the variables 

for each timeframe. The filter is named after Rudolf E. Kálmán, one of the primary 

developers of its theory. 
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Technical Description 

The Kalman filter is an efficient recursive filter that estimates the internal state of a 

linear dynamic system from a series of noisy measurements. It is used in a wide range 

of engineering and econometric applications from radar and computer vision to 

estimation of structural macroeconomic models, and is an important topic in control 

theory and control systems engineering. Together with the linear-quadratic regulator 

(LQR), the Kalman filter solves the linear–quadratic–Gaussian control problem 

(LQG). The Kalman filter, the linear-quadratic regulator, and the linear–quadratic–

Gaussian controller are solutions to what arguably are the most fundamental 

problems in control theory. 

In most applications, the internal state is much larger (more degrees of freedom) than 

the few "observable" parameters which are measured. However, by combining a 

series of measurements, the Kalman filter can estimate the entire internal state. 

In the Dempster–Shafer theory, each state equation or observation is considered a 

special case of a linear belief function and the Kalman filter is a special case of 

combining linear belief functions on a join-tree or Markov tree. Additional 

approaches include belief filters which use Bayes or evidential updates to the state 

equations. 

A wide variety of Kalman filters have now been developed, from Kalman's original 

formulation, now called the "simple" Kalman filter, the Kalman–Bucy filter, 

Schmidt's "extended" filter, the information filter, and a variety of "square-root" 

filters that were developed by Bierman, Thornton, and many others. Perhaps the most 

commonly used type of very simple Kalman filter is the phase-locked loop, which is 

now ubiquitous in radios, especially frequency modulation (FM) radios, television 

sets, satellite communications receivers, outer space communications systems, and 

nearly any other electronic communications equipment. 
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Kalman filter deals effectively with the uncertainty due to noisy sensor data and to 

some extent also with random external factors. Kalman filter produces an estimate 

of the state of the system as an average of the system's predicted state and of the new 

measurement using a weighted average. 

The Kalman Filter Equations 

Many derivations of the Kalman filter exist in the literature; only results are provided 

in this equations shows a block diagram for the Kalman filter. The Kalman filter 

equations can be deduced from the filtering equation is 

 

The measurement vector is 

 

Where is zero mean white Gaussian noise with covariance RC 

 

The gain (weights) vector is dynamically computed as 

 

Where the measurement noise matrix P represents the predictor covariance matrix, 

and is equal to 

 

Where       is the covariance matrix for the input u? 
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The corrector equation (covariance of the smoothed estimate) is 

 

Finally, the Predictor Equation is 

 

 

 

  

 

 

 

Figure (2): Structure of the Kalman filter 

The Singer Kalman Filter 

The Singer1 filter is a special case of the Kalman where the filter is governed by a 

specified target dynamic model whose acceleration is a random process with 

autocorrelation function given by 

 

Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned  

Maneuvering Targets, IEEE Transaction on aerospace and Electronics, Where         is 

the correlation      time of the acceleration due to target maneuver or atmospheric 
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365 
 

International Journal for Scientific Research, London Vol (3), No (7), 2024    
https://doi.org/10.59992/IJSR.2024.v3n7p15     E-ISSN 2755-3418 
 

turbulence. The correlation time may vary from as low as 10 seconds for 

aggressive maneuvering to as large as 60 seconds for lazy maneuver cases. 

Singer defined the random target acceleration model by a first order Markov 

process given by 

 

Where is a zero mean, Gaussian random variable with unity variance, 

 is the maneuver standard deviation, and the maneuvering correlation 

coefficient  is given by 

 

The continuous time domain system that corresponds to these conditions is as 

the Wiener-Kolmogorov whitening filter which is defined by the differential 

equation 

 

Where  is equal to the maneuvering variance using Singer’s model is given 

by 

 

Is the maximum target acceleration with probability and the term  

defines the probability that the target has no acceleration. 

The transition matrix that corresponds to the Singer filter is given by 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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Note that when is small (the target has constant acceleration), 

then Eq. (11.140) reduces to Eq. (11.114). Typically, the sampling interval is 

much less than the maneuver time constant; hence, Eq. (11.140) can be 

accurately replaced by its second order approximation. More precisely, 

 

The covariance matrix was derived by Singer, and it is equal to 

 

Where 
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Two limiting cases are of interest: 

1. The short sampling interval case 

 

And the state transition matrix is computed from Eq. (11.141) as 

 

 

Which is the same as the case for the      filter (constant acceleration). 

2. The long sampling interval (  ). This condition represents the case when 

acceleration is a white noise process. The corresponding covariance 

and transition matrices are, respectively, given by 

 

Note that under the condition that         the cross correlation terms and 

become very small. It follows that estimates of acceleration are no longer 

available, and thus a two state filter model can be used to replace the three state 

model. In this case, 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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Relationship between Kalman and            Filters 

The relationship between the Kalman filter and the      filters can be easily 

obtained by using the appropriate state transition matrix                and gain vector 

K corresponding to the              

 

 

Comparing the previous three equations with the filter equations yields, 

 

Additionally, the covariance matrix elements are related to the gain coefficients by 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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Indicates that the first gain coefficient depends on the estimation 

error variance to the total residual variance, while the other two gain coefficients are 

calculated through the covariances between the second and third 

states and the first observed state. 

An Adaptive Filter 

Is a system with a linear filter that has a transfer function controlled by variable 

parameters and a means to adjust those parameters according to an optimization 

algorithm? 

Because of the complexity of the optimization algorithms, almost all adaptive filters 

are digital filters.  

Adaptive filters have become much more common and are now routinely used in 

devices such as mobile phones and other communication devices, camcorders and 

digital cameras, and medical monitoring equipment 

Type of Adaptive Filter 

1- The least mean squares (LMS) filter. 

2- The Recursive least squares (RLS) Filter. 
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Block diagram 

 

Figure (3) 

Adaptive Filter, compact representation 

k = sample number, 

x = reference input, 

d = desired input,  

ε = error output, 

f = filter impulse response, 

Σ = summation, 

Box=linear filter and adaption algorithm. 

 

Figure (4): linear filter and adaption algorithm 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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There are two input signals to the adaptive filter: 

K = represents the discrete sample number. 

The filter is controlled by a set of =   L+1 coefficients or weights. 

W k = [w 0 k, w 1 k, . . ., w L k ]  

Or vector of weights, which control the filter at sample time k.  

Occurs as a result of adjustments computed at sample time k.  

These changes will be applied after sample time k and before they are used at sample 

time k+1. 

The input signals are defined as follows: 

d k = g k + u k + v k 

x k = g k ′ + u k ′ + v k ′ 

Where:  

g = the desired signal, 

g' = a signal that is correlated with the desired signal g  

u = an undesired signal that is added to g, but not correlated with g or g' 

u' = a signal that is correlated with the undesired signal u, but not correlated with g 

or g', 

v = an undesired signal (typically random noise) not correlated with g, g', u, u' or 

v', 

v' = an undesired signal (typically random noise) not correlated with g, g', u, u' or 

v. 
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Tapped Delay Line FIR Filter 

If the variable filter has a tapped delay line Finite Impulse Response (FIR) structure, 

then the impulse response is equal to the filter coefficients. The output of the filter is 

given by 

y k = ∑ l = 0 L w l k   x ( k − l ) = g ^ k + u ^ k + v ^ k  

Where 

 w l k  

Ideal Case 

In the ideal case v ≡ 0, v ′ ≡ 0, g ′ ≡ 0. All the undesired signals in d k are represented 

by u k.  

x k consists entirely of a signal correlated with the undesired signal in u  

The output of the variable filter in the ideal case is 

y k = u ^ k  

The error signal or cost function is the difference between d k and y k  

ϵ k = d k − y k = g k + u k − u ^k. The desired signal gk passes through without being 

changed. 

The error signal ϵ k is minimized in the mean square sense when [u k − u ^ k] is 

minimized. In other words, u ^ k is the best mean square estimate of uk. In the ideal 

case, u k = u ^ k and ϵ k = g k, and all that is left after the subtraction is g which is 

the unchanged desired signal with all undesired signals removed. Signal components 

in the reference input in some situations, the reference input x k includes components 

of the desired signal. This means g' ≠ 0. Perfect cancelation of the undesired 

interference is not possible in the case, but improvement of the signal to interference 

ratio is possible. The output will b ϵ k = d k − y k = g k − g ^ k + u k − u ^k. The 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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desired signal will be modified (usually decreased).The output signal to interference 

ratio has a simple formula referred to as power inversion. 

ρ o u t ( z ) = 1 ρ r e f ( z ).  

Where  

ρ o u t ( z ) = output signal to interference ratio. 

ρ r e f ( z )   = reference signal to interference ratio. 

This formula means that the output signal to interference ratio at a particular 

frequency is the reciprocal of the reference signal to interference ratio. 

 

 

Figure (5): Adaptive linear combiner 

 

Adaptive linear combiner showing the combiner and the adaption process. k = 

sample number, n=input variable index, x = reference inputs, d = desired input, W = 

set of filter coefficients, ε = error output, Σ = summation, upper box=linear combiner, 

lower box=adaption algorithm. 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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Figure (6): Adaptive algorithm. 

Adaptive linear combiner, compact representation. 

k = sample number, 

n=input variable index, 

x = reference inputs, 

d = desired input, 

ε = error output, 

Σ = summation. 

The adaptive linear combiner (ALC) resembles the adaptive tapped delay line FIR 

filter except that there is no assumed relationship between the X values. If the X 

values were from the outputs of a tapped delay line, then the combination of tapped 

delay line and ALC would comprise an adaptive filter. However, the X values could 

be the values of an array of pixels. Or they could be the outputs of multiple tapped 

delay lines. The ALC finds use as an adaptive beam former for arrays of hydrophones 

or antennas. 

y k = ∑ l = 0 L w l k   x l k = W k T x k  

Where w l k refers to the l 'th weight at k'th time. 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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LMS Algorithm  

Main article: Least mean squares filter 

If the variable filter has a tapped delay line FIR structure, then the LMS update 

algorithm is especially simple. Typically, after each sample, the coefficients of the 

FIR filter are adjusted as follows: 

For l = 0 … L  

w l , k + 1 = w l k + 2 μ   ϵ k   x k − l  

μ is called the convergence factor. 

The LMS algorithm does not require that the X values have any particular 

relationship; therefor it can be used to adapt a linear combiner as well as an FIR filter. 

In this case the update formula is written as: 

w l , k + 1 = w l k + 2 μ   ϵ k   x l k  

The effect of the LMS algorithm is at each time, k, to make a small change in each 

weight. The direction of the change is such that it would decrease the error if it had 

been applied at time k. The magnitude of the change in each weight depends on μ, 

the associated X value and the error at time k. The weights making the largest 

contribution to the output, y k, are changed the most. If the error is zero, then there 

should be no change in the weights. If the associated value of X is zero, then changing 

the weight makes no difference, so it is not changed. 

Convergence 

μ controls how fast and how well the algorithm converges to the optimum filter 

coefficients. If μ is too large, the algorithm will not converge. If μ is too small the 

algorithm converges slowly and may not be able to track changing conditions. If μ is 

large but not too large to prevent convergence, the algorithm reaches steady state 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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rapidly but continuously overshoots the optimum weight vector. Sometimes, μ is 

made large at first for rapid convergence and then decreased to minimize overshoot. 

Widrow and Stearns state in 1985 that they have no knowledge of a proof that the 

LMS algorithm will converge in all cases. However under certain assumptions about 

stationarity and independence it can be shown that the algorithm will converge if 

0 < μ < 1 σ 2  

Where  

σ 2 = ∑ l = 0 L σ l 2  = sum of all input power 

σ l is the RMS value of the l  'th input 

In the case of the tapped delay line filter, each input has the same RMS value because 

they are simply the same values delayed. In this case the total power is 

σ 2 = ( L + 1 ) σ 0 2  

Where  

σ 0 { is the RMS value of x k  , the input stream. 

This Ieads to a normalized LMS Algorithm 

w l , k + 1 = w l k + ( 2 μ σ σ 2 ) ϵ k   x k – l   

In which case the convergence criteria becomes: 0 < μ σ < 1  

Applying the Proposed Approach 

Applications and the Advantages 

The Applications Kalman Filter 

The Kalman filter has numerous applications in technology. A common application 

is for guidance, navigation, and control of vehicles, particularly aircraft, spacecraft 

https://doi.org/10.59992/IJSR.2024.v3n7p15
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and dynamically positioned ships. Furthermore, the Kalman filter is a widely applied 

concept in time series analysis used in fields such as signal processing and 

econometrics. Kalman filters also are one of the main topics in the field of robotic 

motion planning and control, and they are sometimes included in trajectory 

optimization. The Kalman filter also works for modeling the central nervous system's 

control of movement. Due to the time delay between issuing motor commands and 

receiving sensory feedback, use of the Kalman filter supports a realistic model for 

making estimates of the current state of the motor system and issuing updated 

commands. 

The algorithm works in a two-step process. In the prediction step, the Kalman filter 

produces estimates of the current state variables, along with their uncertainties. Once 

the outcome of the next measurement (necessarily corrupted with some amount of 

error, including random noise) is observed, these estimates are updated using a 

weighted average, with more weight being given to estimates with higher certainty. 

The algorithm is recursive. It can run in real time, using only the present input 

measurements and the previously calculated state and its uncertainty matrix; no 

additional past information is required. 

Using a Kalman filter does not assume that the errors are Gaussian. However, the 

filter yields the exact conditional probability estimate in the special case that all 

errors are Gaussian. 

Extensions and generalizations to the method have also been developed, such as the 

extended Kalman filter and the unscented Kalman filter which work on nonlinear 

systems. The underlying model is a hidden Markov model where the state space of 

the latent variables is continuous and all latent and observed variables have Gaussian 

distributions. Also, Kalman filter has been successfully used in multi-sensor fusion, 

and distributed sensor networks to develop distributed or consensus Kalman filter 

https://doi.org/10.59992/IJSR.2024.v3n7p15
https://en.wikipedia.org/wiki/Dynamic_positioning
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Motion_planning
https://en.wikipedia.org/wiki/Trajectory_optimization
https://en.wikipedia.org/wiki/Trajectory_optimization
https://en.wikipedia.org/wiki/Central_nervous_system
https://en.wikipedia.org/wiki/Sensory_feedback
https://en.wikipedia.org/wiki/State_variable
https://en.wikipedia.org/wiki/Weighted_mean
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Real-time_Control_System
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Generalization
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Unscented_Kalman_filter#Unscented_Kalman_filter
https://en.wikipedia.org/wiki/Nonlinear_system
https://en.wikipedia.org/wiki/Nonlinear_system
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/State_space
https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/State-space_representation
https://en.wikipedia.org/wiki/Sensor_fusion
https://en.wikipedia.org/wiki/Sensor_Networks
https://en.wikipedia.org/wiki/Consensus_(computer_science)


 

378 
 

International Journal for Scientific Research, London Vol (3), No (7), 2024    
https://doi.org/10.59992/IJSR.2024.v3n7p15     E-ISSN 2755-3418 
 

The Calculation 

The Kalman filter uses a system's dynamic model (e.g., physical laws of motion), 

known control inputs to that system, and multiple sequential measurements (such as 

from sensors) to form an estimate of the system's varying quantities (its state) that is 

better than the estimate obtained by using only one measurement alone. As such, it 

is a common sensor fusion and data fusion algorithm. 

Noisy sensor data, approximations in the equations that describe the system 

evolution, and external factors that are not accounted for all place limits on how well 

it is possible to determine the system's state. The Kalman filter deals effectively with 

the uncertainty due to noisy sensor data and, to some extent, with random external 

factors. The Kalman filter produces an estimate of the state of the system as an 

average of the system's predicted state and of the new measurement using a weighted 

average. The purpose of the weights is that values with better (i.e., smaller) estimated 

uncertainty are "trusted" more. The weights are calculated from the covariance, a 

measure of the estimated uncertainty of the prediction of the system's state. The result 

of the weighted average is a new state estimate that lies between the predicted and 

measured state, and has a better estimated uncertainty than either alone. This process 

is repeated at every time step, with the new estimate and its covariance informing the 

prediction used in the following iteration. This means that Kalman filter works 

recursively and requires only the last "best guess", rather than the entire history, of a 

system's state to calculate a new state. 

The relative certainty of the measurements and current state estimate is an important 

consideration, and it is common to discuss the response of the filter in terms of the 

Kalman filter's gain. The Kalman gain is the relative weight given to the 

measurements and current state estimate, and can be "tuned" to achieve a particular 

performance. With a high gain, the filter places more weight on the most recent 

measurements, and thus follows them more responsively. With a low gain, the filter 
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follows the model predictions more closely. At the extremes, a high gain close to one 

will result in a more jumpy estimated trajectory, while a low gain close to zero will 

smooth out noise but decrease the responsiveness. 

When performing the actual calculations for the filter (as discussed below), the state 

estimate and covariances are coded into matrices to handle the multiple dimensions 

involved in a single set of calculations. This allows for a representation of linear 

relationships between different state variables (such as position, velocity, and 

acceleration) in any of the transition models or covariances. 

Example of Application  

As an example application, consider the problem of determining the precise location 

of a truck. The truck can be equipped with a GPS unit that provides an estimate of 

the position within a few meters.  

The GPS estimate is likely to be noisy; readings 'jump around' rapidly, though 

remaining within a few meters of the real position. In addition, since the truck is 

expected to follow the laws of physics, its position can also be estimated by 

integrating its velocity over time, determined by keeping track of wheel revolutions 

and the angle of the steering wheel. This is a technique known as dead reckoning.  

Typically, the dead reckoning will provide a very smooth estimate of the truck's 

position, but it will drift over time as small errors accumulate.  

In this example, the Kalman filter can be thought of as operating in two distinct 

phases: predict and update. In the prediction phase, the truck's old position will be 

modified according to the physical laws of motion (the dynamic or "state transition" 

model). Not only will a new position estimate be calculated, but also a new 

covariance will be calculated as well. Perhaps the covariance is proportional to the 

speed of the truck because we are more uncertain about the accuracy of the dead 

reckoning position estimate at high speeds but very certain about the position 
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estimate at low speeds. Next, in the update phase, a measurement of the truck's 

position is taken from the GPS unit. 

Along with this measurement comes some amount of uncertainty, and its covariance 

relative to that of the prediction from the previous phase determines how much the 

new measurement will affect the updated prediction. Ideally, as the dead reckoning 

estimates tend to drift away from the real position, the GPS measurement should pull 

the position estimate back towards the real position but not disturb it to the point of 

becoming noisy and rapidly jumping 

The Advantages Kalman Filter 

1. The gain coefficients are computed dynamically. This means that the same 

filter can be used for a variety of maneuvering target environments. 

2. The Kalman filter gain computation adapts to varying detection histories, 

including missed detections 

3. The Kalman filter provides an accurate measure of the covariance matrix. 

This allows for better implementation of the gating and association processes. 

4. The Kalman filter makes it possible to partially compensate for the effects of 

miss-correlation and miss-association 

5. Kálmán's ideas to the nonlinear problem of trajectory estimation for the 

Apollo program leading to its incorporation in the Apollo navigation 

computer. 

Application of Adaptive Filters 

Adaptive filters have become much more common and are now routinely used in 

devices such as mobile phones and other communication devices, camcorders and 

digital cameras, and medical monitoring equipment. 

Example of Application 

A fast food restaurant has a drive-up window. Before getting to the window, 

customers place their order by speaking into a microphone. The microphone also 

https://doi.org/10.59992/IJSR.2024.v3n7p15
https://en.wikipedia.org/wiki/Project_Apollo


 

381 
 

International Journal for Scientific Research, London Vol (3), No (7), 2024    
https://doi.org/10.59992/IJSR.2024.v3n7p15     E-ISSN 2755-3418 
 

picks up noise from the engine and the environment. This microphone provides the 

primary signal. The signal power from the customer’s voice and the noise power 

from the engine are equal. It is difficult for the employees in the restaurant to 

understand the customer. To reduce the amount of interference in the primary 

microphone, a second microphone is located where it is intended to pick up sounds 

from the engine. 

It also picks up the customer’s voice. This microphone is the source of the reference 

signal. In this case, the engine noise is 50 times more powerful than the customer’s 

voice. Once the canceler has converged, the primary signal to interference ratio will 

be improved from 1:1 to 50:1 

The Advantages of Adaptive Filters 

1- They could be the outputs of multiple tapped delay lines. The Adaptive linear 

combiner (ALC) finds use as an adaptive beam former for arrays of hydrophones 

or antennas. y k = ∑ l = 0 L w l k   x l k = W k T x k  

Where w l k refers to the l 'th weight at k'th time. 

2- Linear filter. 

3- The filter Real Time, 

4- The noise = zero. 

Results and Discussion  

The Result of Different Kalman Filter and Adaptive Filter 
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Figure (13) 

Conclusions 

In a Kalman Filter you assume a model for your system and a model for your error 

and the filter estimates the dynamic states of the model, which change as a function 

of time. On the other hand, with adaptive control you assume a model, but define 

some parameters of the model that are unknown. 

The Kalman filter is a linear estimator that minimizes the mean squared error as long 

as the target dynamics are modeled accurately. 

All other recursive filters, such as the and the Benedict-Bordner filters are special 

cases of the general solution provided by the Kalman filter for the mean squared 

estimation problem. 

After comparison between kalman filter and real time adaptive filter we got the result 

of demonstrates that, the best filter to be use and provide the required military 

protection for the country is kalman filter because of it is high efficiency. 

Future Work 

The Kalman Filter predicts the future system state based on past estimations. 
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For instance, imagine you want to predict the future position of a moving object 

based on noisy sensor data. The Kalman filter will help refine those readings and 

provide a more accurate forecast of the object's future state. 
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