
24

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

A Proposed Best Practices for Agile Approach - XP

Thamer Abdel-Hamid Shoukry

Ph.D. Student, Software Engineering, Putra University, Malaysia

Rashed Aly Gaber

Ph.D. Student, Information Technology, Philadelphia University, Jordan

Abstract:

This paper is interested in proposing a set of proposed practices for eXtreme
Programming (XP) approach to improve the quality of applying this approach in the
domain of the software development process. This paper clarifies the basic concepts
of agile methods and presents the fundamentals and features of XP approach. life
cycle phases of XP approach include six phases: exploration, planning, iterations to
release, production, maintenance, and death. Each XP phase can be achieved through
performing a set of activities or steps. The researchers developed a set of improved
steps for achieving XP phases. The researchers also propose a quality assurance
approach for applying XP approach. The proposed quality assurance approach can
be used for assuring the quality of achieving XP phases. Then, the deviation between
the actual quality and the acceptable quality level can be identified and analyzed. The
weaknesses of the software development practices can be discovered, treated to
improve the quality of each phase, and avoided in further phases. The strengths of
the proposed practices are utilized to increase the quality of achieving the software
projects.

Keywords: Agile Methods Software Development; XP Approach; Agile Best
Practices; XP Life Cycle

25

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

1 Introduction and Problem Definition

Software Development (SD) is a mentally complicated task. Therefore, different
software development methodologies and quality assurance methods are used to
attain high-quality, reliable, and bug-free software [17]. In recent years, agile
software development methods have gained much attention in the field of software
engineering [27]. A software development method is said to be agile software
development method when a method is people focused, communications-oriented,
flexible (ready to adapt to expected or unexpected change at any time), speedy
(encourages rapid and iterative development of the product in small releases), lean
(focuses on shortening timeframe and cost and on improved quality), responsive
(reacts appropriately to expected and unexpected changes), and learning (focuses on
improvement during and after product development) [1].

Agile software development is an iterative and incremental approach that is
performed in a highly collaborative manner to produce high-quality software that
meets the changing needs of its stakeholders. Agile software development methods
offer a viable solution when the software to be developed has fuzzy or changing
requirements, being able to cope with changing requirements throughout the life
cycle of a project [7]. Agile software development methods include XP, Scrum,
Crystal, Feature Driven Development (FDD), Dynamic System Development
Methodology (DSDM), and Adaptive Software Development (ASD) [4].

XP is the best-known agile method that is driven by a set of shared values
including simplicity, communication, feedback, and courage. The XP values,
practices, and life cycle will be explained in the next section of this paper.

Scrum is an iterative and incremental approach for managing software projects
in a changing environment. Each iteration aims to produce a potential set of
software functionality.

26

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

Crystal methodologies focus on incremental development which may be in
parallel. Each increment may take several iterations to complete. The tunable
project life cycle that is common for all Crystal methodologies is: envisioning,
proposal, sales, setup, requirements, design and code, test, deploy, train, and alter
[1]. Crystal family of methodologies provides guidelines for policy standards,
tools, work project, and standards and roles to be followed in the development
process.

FDD is a model-driven and short-iteration approach for developing software. It
focuses on the design and building phases. FDD provides guidelines, tasks,
techniques, and five sequential processes: develop an overall model, build a
feature list, plan by feature, design by feature, and build by feature [24].

DSDM provides a framework that supports rapid, iterative, and collaborative
software development for producing high-quality business information systems
solutions [15]. The basic principle of DSDM is that the resources and timeframe
are adjusted and then the goals and the required functionality are adjusted
accordingly.

ASD offers an agile and adaptive approach to high-speed and high-change
software projects. ASD replaces the static plan-design life cycle with a dynamic
speculate-collaborate-learn life cycle. ASD focuses more on results and their
quality than the tasks [13].

XP is one of the most popular agile development methods. Therefore, it is the main
concern of this paper. The XP process is characterized by short development cycles,
incremental planning, continuous feedback, and reliance on communication and
evolutionary design [27]. It is designed for use with small teams that need to develop
software quickly and in an environment of rapidly changing requirements.

27

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

Although the many advantages and features of XP approach, using it for developing
software doesn't guarantee the success of this process at an acceptable level of
quality. In addition, software projects are faced with many challenges that may lead
them to failure. Therefore, there is a need to assuring the quality of software
development. Quality assurance is all the planned and systematic activities
implemented within the quality system, and demonstrated as needed, to provide
adequate confidence that an entity will fulfill the requirements for quality [11]. This
paper focuses on proposing a set of best steps for achieving each XP phase,
evaluating the quality of achieving this phase, and determining the deviation of
achieving the phase to improve the quality of software development.

2- eXtreme Programming (XP) Approach

Extreme Programming was developed at Chrysler by Kent Beck while working on a
payroll project as a member of a 15-person team. Beck continued to refine and
improve the XP methodology after the project was completed until it gained
worldwide acceptance in 2000 and 2001 [14].

The XP software development process focuses on iterative and rapid development.
XP approach stresses communication and coordination among the team members at
all times; and requires cooperation between the customer, management, and
development team to form a supportive business culture for the successful
implementation of XP [1].

It is designed for use in an environment of rapidly changing requirements. It helps to
reduce the cost of change by being more flexible to changes. XP is characterized by
six phases: exploration, planning, iterations to the first release, productionizing,
maintenance, and death. XP is a software development discipline in the family of
agile methodologies that contributes towards quality improvement using a dozen
practices [17]. XP consists of twelve practices, which are planning game, small

28

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

releases, metaphor, simple design, testing, refactoring, pair programming, collective
code ownership, continuous integration, 40-hour week, on-site customer, and coding
standard [19]. Figure (1) illustrates the XP values, practices, and phases.

2-1 XP Values

XP is driven by a set of values including simplicity, communication, feedback, and
courage.

Communication: An Agile method emphasizes face-to-face communication
within the team and with the customer who is closely involved with the
development process [21]. XP requires direct communication among all
members to give the developers a shared view of the system which matches the
view held by the users of the system.

Feedback: Software developers should always have a way of getting information
about the development process. Feedback relates to many dimensions that
include the system, customer, and team. Feedback from the system and the team

take corrective or supportive actions. In addition, feedback from customers
includes the functional and acceptance tests.

29

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

Simplicity: A simple design always takes less time to finish than a complex one.
Therefore, XP encourages starting with the simplest solution. Extra functionality
can then be added later. Extreme programmers do the simplest thing that could
possibly work and leave the system in the simplest condition possible. This
improves the overall speed of development while still retaining an emphasis on
working software.

Courage: Courage means that developers are prepared to make important
decisions that support XP practices. Courage enables developers to feel

30

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

comfortable with refactoring their code when necessary. This means reviewing
the existing system and modifying it so that future changes can be implemented
more easily. In addition, courage may include removing source code that is
obsolete, no matter how much effort was used to create that source code.

2-2 XP Practices (rules)

The four core values of XP are implemented with twelve core practices: Planning
Game, Small Releases, Metaphor, Simple Design, Testing, Refactoring, Pair
Programming, Collective Code Ownership, Continuous Integration, 40-hour Week,
On-Site Customer, and Coding Standard.

1. Planning Game: At the beginning of the development process, customers,
managers, and developers meet to create, estimate, and prioritize requirements

understandable by all parties. In fact, the developers estimate the effort needed

the scope and timing of releases. The planning game and the story cards offer the
devices to perform planning on the most detailed level for very short periods of
time [18].

2. Small Releases: The development is divided in a sequence of small iterations,
each implementing new features separately testable by the customer [7]. XP
increases the pace of the delivery of the software by having short releases of 3-4
weeks. At the end of each release, the customer reviews the software product,
identify defects, and adjust future requirements. An initial version of the software
is put into production after the first few iterations. The small releases help the
customer to gain confidence in the progress of the project. In addition, the small
releases help the customer to come up with their suggestions on the project based
on real experience.

31

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

3. Metaphor: The system metaphor is the story that customers, developers, and
managers can talk about how the system works [19]. The system metaphor is an
effective way of getting all members of the project team to visualize the project.
It should provide inspiration, suggest a vocabulary, and a basic architecture. This
is the only principle not strictly required in every XP project.

4. Simple Design: The developers must focus on designing only what is needed to
support the functionality being implemented. The Developers are urged to keep
the design as simple as possible, say everything once and only once. A program
built with XP should be a simple program that meets the current requirements.
Kent Beck stated that the right design for the software at any given time is the
one that runs all the tests, has no duplicated logic, states every intention important
to the programmers, and has the fewest possible classes and methods [19].

5. Testing: Testing is an integral part of XP. All code must have automated unit
tests and acceptance tests, and must pass all tests before it can be released [7].

Programmers write unit tests so that their confidence in the operation of the
program can become part of the program itself. For the same reason, customers
write functional tests. The result is a program that becomes more and more
confident over time.

6. Refactoring: Refactoring is the process of changing the code in order to improve
it by removing redundancy, eliminating unused functionalities, improving code
readability, reducing complexity, improving maintainability, adapting it to
patterns or even trying to make the software work in an acceptable way.
Refactoring throughout the entire project life cycle saves time of development
and increases quality.

7. Pair Programming: Pair programming is one of the key practices of XP. It is a
programming technique that requires two programmers to work together at
solving a development task while sharing the monitor, the keyboard, and the

32

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

mouse. The work may include analyzing data, creating the data model,
programming, etc. The advantages of pair programming are improving
productivity, the quality of the solution, and job satisfaction [26]. Moreover, it
reduces the time needed for task completion, it is particularly useful in complex
tasks, and it is useful for training.

8. Collective Code Ownership: This practice indicates that the code is owned and
shared by all developers. Everyone is able to edit it and see the changes made by
others. It tends to spread knowledge of the system around the team. The code
should be subjected to configuration management.

9. Continuous Integration: Developers integrate a new piece of code into the system
as soon as possible it is ready. All tests are run, and they must be passed for
accepting the changes in the code. Thus, XP teams integrate and build the
software system multiple times per day. Continuous integration reduces
development conflicts and helps to create a natural end to the development
process.

10. 40-Hour Weeks: This practice indicates that the software developers should not
work more than 40-hour weeks, and if there is overtime one week, the next week
should not include more overtime. People perform best and most creatively if
they are rested, fresh, and healthy. Therefore, requirements should be selected
for iteration such that developers do not need to put in overtime.

11. On-Site Customer: A customer always works with the development team to
answer questions, perform acceptance tests, and ensure that development is
progressing as expected. This customer-driven software development led to a
deep redefinition of the structure and features of the system [7]. It supports
customer-developer communication [18].

12. Coding Standards: This practice indicates that the developers must agree on a
common set of rules enforcing how the system shall be coded. This makes
understanding easier and helps in producing consistent code. Coding standards

33

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

are almost unavoidable in XP, due to the continuous integration and collective
ownership properties.

2-3 XP Process

XP approach can be viewed as life cycle phases that include six phases: exploration,
planning, iterations to release, productionizing, maintenance, and death [1]. Each
phase can be achieved through a set of activities. Figure (2) illustrates the XP life
cycle [22].

1. Exploration Phase: In the exploration phase, the customers write out the story
cards that they wish to be included in the first release. Each story card describes
a feature to be added to the program. At the same time, the development team
gets familiar with the development environment and the addressed technology
[25]. The exploration phase takes between a few weeks to a few months,
depending largely on how familiar the technology is to the programmers.

2. Planning Phase: In the planning phase, the customers set the priority order for
the stories, and an agreement on the features of the first small release is made.
The developers estimate the necessary effort and time for each story. Then the
schedule of the first release is developed and approved. The planning phase takes
a couple of days.

3. Iterations to Release Phase: In the iterations to release phase, the actual
implementation is done. This phase includes several iterations of the systems
before the first release. The schedule is broken down into several iterations
that will each take one to four weeks to implement [22]. For each iteration, the
customer chooses the smallest set of most valuable stories that make sense
together and programmers produce the functionality. Small releases reduce the
risk of misled development. XP coding always begins with the development
of unit tests. After the tests are written, the code is developed and continuously
integrated and tested. At the end of the iteration all functional tests should be

34

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

running before the team can continue with the next iteration [19]. When all
iterations scheduled for a release are completed the system is ready for
production.

4. Productionizing phase: The production phase includes extra testing and
checking of the functionality and performance of the system before the system
can be released to the customer [22, 25]. At this phase, new changes may still

35

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

be found, and the decision has to be made if they are included in the current
release. During this phase, the iterations may need to be quickened from three
weeks to one week. The postponed ideas and suggestions are documented for
later implementation during, e.g., the maintenance phase.

5. Maintenance Phase: After the first release is productionized, the system must
be kept running in production, while remaining stories are implemented in
further iterations. Therefore, the maintenance phase requires an effort for
customer support tasks. Development stays in this phase until the system

6. Death Phase: Finally, development enters the death phase when the customer
has no more stories to be implemented, and all the necessary documentation
of the system is written as no more changes to the architecture, design, or code
are made. Death may also occur if the system is not delivering the desired
outcomes, or if it becomes too expensive for further development.

3- Enhanced Steps for Achieving XP Phases

In XP approach, developers communicate with each other to efficiently utilize tacit
knowledge and quickly find new solutions to current challenges. Developers
communicate with customer representatives to deliver the most valued features, gain
rapid feedback on deliveries,

XP approach can be viewed as life cycle phases that include six phases: exploration,
planning, iterations to release, productionizing, maintenance, and death [1]. Each
phase can be achieved through a set of steps. The researchers propose a set of best
steps for achieving each phase. In this section, the proposed best steps are presented.
In these steps, if we don't tell who is responsible for performing the step, we mean
that the developers and customers together must participate in doing it.

36

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

3-1 The Proposed Best Steps of "The Exploration Phase"

The XP software development process is regarded as the flow in which user stories
are generated, designed, coded and unit tested, refactored, and verified. A user story
is a software system requirement formulated as one or two sentences in the everyday
or business language of the customers. The user stories should be written by the
customers for a software project. During the development process, customers can
generate new user stories and change old ones [27]. The proposed best steps required
for achieving the exploration phase are:

1. Presenting and clarifying the purpose and the steps of "the exploration phase"
to the customers who participate in the team.

2. Obtaining a preliminary background of the project. The background will be
incremented through the next phases. The project's background includes the
project's motivation, assumptions, constraints, addressed technology, and
acceptance criteria.

3. Clarifying the purpose of the story cards as a tool for collecting the
requirements. Each story card describes a feature to be added to the current
release.

4. Presenting and clarifying the writing standards that must be considered when
writing the story cards. For example, the stories must be consistent, clear,
testable, and integrated with the other related stories.

5. Writing the story cards that the customers wish to be included in the current
release. This step must be done by the customers.

6. Understanding the story cards. This step must be done by the developers.
7. Analyzing and validating the story cards.

37

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

3-2 The Proposed Best Steps of "the Planning Phase"

In the planning phase customers assign priorities to their stories and developers
estimate the necessary effort for their implementation. Then a set of stories for the
first small release is agreed upon and the release is scheduled according to the
program -site customers should do this with
programmers in face-to-face meetings [20]. The proposed best steps required for
achieving the planning phase are:

1. Presenting and clarifying the purpose and the steps of "the planning phase"
to the customers who participate in the team.

2. Setting the priority order of the stories. This step must be done by the
customers.

3. Identifying and negotiating the features that must be included in the current
release.

4. Preparing an approved list of features needed to implement the current
release.

5. Estimating the necessary effort and time for each story.
6. Preparing a proposed schedule for the current release.
7. Negotiating and approving the proposed schedule of the first release to reach

to a final one.

3-3 The Proposed Best Steps of "Iterations to Release Phase"

XP promotes the concept of "small releases" [16]. The meaningful releases should
be made available to users when completed. This will allow early and frequent
feedback from the customers. The proposed best steps required for achieving this are:

1. Presenting and clarifying the purpose and the steps of the "iteration to release
phase" to the customers who participate in the team.

38

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

2. Breaking down the schedule into several iterations. The iteration will take one
to four weeks.

3. Choosing the smallest set of most valuable stories that make sense together
[25] and are useful to be included in each iteration.

4. Reviewing the functionality of all iterations.
5. Selecting the iteration to be implemented. The selection process depends on

the logical sequence of the current release's functionalities.
6. Developing the unit tests for the selected iteration.
7. Writing the code for the selected iteration.
8. Integrating and testing the selected iteration.
9. Ensuring that all functional tests were done before moving to the next iteration.
10. Ensuring that all iterations scheduled are completed.
11. Delivering the current release to the production phase.

3-4 The Proposed Best Steps of "Productionizing Phase"

In the productionizing phase, there are more testing and checking of the functionality
and performance of the system such as system testing, load testing, and installation
testing. The proposed best steps required for achieving the productionizing phase are:

1. Presenting and clarifying the purpose and the steps of "the productionizing
phase" to the customers who participate in the team.

2. Performing extra testing and checking the functionality and performance of
the system such as system testing, load testing, and installation testing.

3. Identifying new changes that needed to be included in the current release.
4. Implementing and testing the new changes identified in the previous step.
5. Identifying and documenting the postponed ideas and suggestions to

implement them during the maintenance phase or in the next releases.
6. Delivering the current running release to the customers.

39

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

3-5 The Proposed Best Steps of "Maintenance Phase"

During the maintenance phase, the system must be kept running in production, while
remaining stories are implemented in further iterations. Development stays in this

maintenance efforts can be viewed in five main activities: system maintenance,
solving system crashes, end-user assistance, system enhancement, and system
reengineering. The proposed best steps required for achieving the maintenance phase
are:

1. Presenting and clarifying the purpose and the steps of "the maintenance phase"
to the customers who participate in the team.

2. Identifying, analyzing, and documenting the circumstances that led to bugs
and symptoms of the problems. Then edit programs to fix bugs.

3. Performing unit, system, and regression testing for the edited programs.
4. Identifying, analyzing, and documenting the causes of the system crash.
5. Identifying and clarifying corrective instructions that are required to prevent

the system crash. These instructions may include terminating the online
session, reinitializing the application, recovering lost or corrupted databases,
fixing problems of local or wide networks, and/or fixing hardware problems.

6. Providing users with additional training.
7. Identifying and documenting enhancement ideas and requests.
8. Taking decisions about the enhancement ideas and requests that must be

implemented in this phase or moved to the next releases.
9. Writing and testing code for the approved enhancement ideas and requests.

40

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

3-6 The Proposed Best Steps of "Death Phase"

In the death phase, the software development process has been finished. Now there
is no change to architecture, design or code will be made. The proposed best steps
required for achieving the death phase are:

1. Presenting and clarifying the purpose and the steps of "the maintenance phase"
to the customers who participate in the team.

2. Ensuring that all predefined stories have been implemented.
3. Finalizing all project documentation.
4. Evaluating the quality of the current release and the related parts of the system.
5. Identifying and documenting the learned lessons from the project.
6. Studying the feasibility of continuing the running of the release and the

system.

4- The Proposed Approach for Improving the Quality of Applying XP
Approach

Applying XP approach to the software development process doesn't guarantee the
success of this process at an acceptable level of quality. In addition, software projects
are faced with many challenges that may lead them to failure. Therefore, there is a
need to assuring the quality of software development. Quality assurance is all the
planned and systematic activities implemented within the quality system, and
demonstrated as needed, to provide adequate confidence that an entity will fulfill the
requirements for quality [11].

The researchers propose a quality assurance approach for applying XP approach. The
proposed quality assurance approach can be used to assuring the quality of achieving
XP phases. Figure (3) illustrates the proposed quality assurance model. The proposed
quality assurance approach includes the following activities:

41

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

1. Achieving XP phase using the proposed best steps.
2. Evaluating the quality of the achieved phase.
3. Identifying the deviation between the actual quality and the acceptable quality

level.
4. Analyzing the deviation to take corrective or supportive actions.

42

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

Firstly, the developers must recall, present, and clarify the proposed best steps of the
current XP phase to the customers who participated in the XP team. Then, the
developers and customers begin to achieve the current XP phase using the proposed
best steps. The proposed best steps of each phase are not having the same level of
importance. Each step may have one of the cases: high importance, average
importance, or low importance. Secondly, the quality of the achieved phase must be
evaluated using common statistical techniques for measuring the quality. Thirdly, the
deviation between the actual quality and the acceptable quality level must be
identified. The acceptable quality level differs from one project to another depending
on the project field and the acceptance criteria of customers. Fourthly, corrective
actions must be done to the current phase if the deviation is due to a weakness in the
performance. Otherwise, supportive actions may be needed for the next phases.

5- Conclusion

The main objective of this paper was to improve the quality of applying XP approach.
Therefore, the researchers propose a set of best steps for achieving each XP phase
and a quality assurance approach for applying the XP approach. The developers and
customers can use the proposed best steps as a guiding tool for achieving each XP
phase. The proposed quality assurance approach can be used to assuring the quality
of achieving each XP phase. Then, the deviation between the actual quality and the
acceptable quality level can be identified and analyzed.

We conclude that quality assurance practices play a very important role in increasing
the probability of software development success. Applying the XP approach for
developing software doesn't guarantee the success of this process. Therefore, there is
a need for complementary quality assurance practices.

43

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

6- Future Work

There are many efforts that can be done in the field of XP approach in the future.
Briefly, the following points are expected to be focused on:

Proposing an approach for evaluating the quality of XP phases.

Building a software tool for managing XP projects.

Using XP approach to achieve higher Capability Maturity Model Integration
(CMMI) levels for IT companies.

Enhancing the calculation of software metrics related to XP projects.

References

[1] A. Qumer and B. Henderson-Sellers, "An Evaluation of the Degree of Agility in Six Agile
Methods and its Applicability for Method Engineering", Information and Software
Technology Vol. 50 Issue 4, 2008, pages 280 295, 2008.

[2] Alan S. Koch, "Agile Software Development - Evaluating the Methods for Your
Organization", Artech House INC., 2005.

[3] Beck, K. and Andres, C., "Extreme Programming Explained: Embrace Change", Addison-
Wesley, 2005.

[4] Dean Liffingwell, "Scaling Software Agility Best Practices for Large Enterprises", The
Agile Software Development Series, Pearson Education Inc., 2007.

[5] G. Gordon Schulmeyer, "Handbook of Software Quality Assurance", 4th edition, Artech
House Inc., 2008.

[6] Gary Chin, "Agile Project Management: How to Succeed in the Face of Changing Project
Requirements", AMACOM, 2004.

[7] Giulio Concas, Marco Di Francesco, Michele Marchesi, Roberta Quaresima, and Sandro
Pinna, "An Agile Development Process and Its Assessment Using Quantitative Object-
Oriented Metrics", 9th International Conference, XP 2008, Limerick, Ireland, Proceedings,
June 2008.

44

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

[8] Hamid Mcheick, "Improving and Survey of Extreme Programming Agile Methodology",
International Journal of Advanced Computing (IJAC), Vol. 3, Issue 3, July 2011.

[9] Helen Sharp and Hugh Robinson, "Collaboration and co-ordination in mature eXtreme
programming teams", International Journal of Human-Computer Studies 66 pages 506 518,
2008.

[10] Hulkko, H. and Abrahamsson, P., "A Multiple Case Study on the Impact of Pair Programming
on Product Quality", Proceedings Of ICSE, pp. 495 504, 2005.

[11] Ince, Darrel, "Software Quality Assurance - a Student Introduction", McGraw-hill
international (UK) limited, 1995.

[12] Ioannis G. Stamelos and Panagiotis Sfetsos, "Agile Software Development Quality
Assurance", Information science reference, Idea Group Inc., 2007.

[13] James A. Highsmith, Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems , Dorset House Publishing, New York, 2000.

[14] Jeffrey A. Livermore, "Factors that Significantly Impact the Implementation of an Agile
Software Development Methodology", Journal of Software, Vol. 3, No. 4, APRIL 2008.

[15] Jennifer Stapleton, "DSDM: The Method in Practice", Addison-Wesley, 1997.

[16] John Hunt, "Agile Software Construction", Springer, 2006.

[17] K.Usha, N.Poonguzhali, and E.Kavitha, "A Quantitative Approach for Evaluating the
Effectiveness of Refactoring in Software Development Process", International Conference on
Methods and Models in Computer Science, Delhi, India, Dec. 2009.

[18] Karlheinz Kautz and Sabine Zumpe, "Just Enough Structure at the Edge of Chaos: Agile
Information System Development in Practice", 9th International Conference, XP 2008,
Limerick, Ireland, Proceedings, June 2008.

[19] Kent Beck, "Extreme Programming Explained: Embrace Change", Addison Wesley, 1999.

[20] N. Wallace, P. Bailey, and N. Ashworth, "Managing XP with Multiple or Remote Customers",
Third International Conference on eXtreme Programming and Agile Processes in Software
Engineering (XP2002), 2002.

45

IJSR, VSRP Publishing, UK ISSN 2755-3418 (Online)

Website: https://ijsr.vsrp.co.uk

[21] Noura Abbas, Andrew M. Gravell, and Gary B. Wills, "Historical Roots of Agile Methods:
Where Did Agile Thinking Come From?", 9th International Conference, XP 2008, Limerick,
Ireland, Proceedings, June 2008.

[22] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta, "Agile Software
Development Methods Review and Analysis", VTT, 2002.

[23] R. C. Martin, "Extreme Programming - Development Through Dialog", IEEE Software, pp.
12 13, 2000.

[24] S.R. Palmer and J.M. Felsing, "A Practical Guide to Feature-Driven Development", Prentice-
Hall Inc, 2002.

[25] Tobias Hildenbrand, Michael Geisser, Thomas Kude, Denis Bruch, and Thomas Acker,
"Agile Methodologies for Distributed Collaborative Development of Enterprise
Applications", International Conference on Complex, Intelligent and Software Intensive
Systems, 2008.

[26] Williams, L., Kessler, R., Cunningham, W., and Jeffries, R, "Strengthening the Case for Pair
Programming", IEEE Software 17, 19 25, 2000.

[27] Yang Yong and Bosheng Zhou, "Evaluating Extreme Programming Effect through System
Dynamics Modeling", International Conference on Computational Intelligence and Software
Engineering (CiSE), Wuhan, China, Dec. 2009.

