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Abstract 

The interest in the topic of time series forecasting has increased during the recent 

years and thus appeared specific modern methods, for example Autoregressive 

Fractional Integrated Moving Average model (ARFIMA), or what is called long 

memory model, which use fractionally difference (d) instead of integer which used 

in ARIMA models. In this study we displayed long memory feature and its tests. 

Our discussion supported by analysing the real time series (daily closing index of the 

Saudi Arabia Stock Market prices) over period 1/1/2018 to 19/12/2022, including 

1240 observations, to make a good model to giving forecast results for future, using 

statistical tests and statistical software (R- 4.2.2 program).  

Firstly we  checked that the data series was unstable by testing unit root, using Dickey 

fuller  and Philips Perron tests ; and confirmed the presence of a long memory pattern 

in it by calculating the Hurst exponent (H), then calculated the fractional differential 

coefficient (d), determined the appropriate models for analysis and prediction, then 

the best model was chosen  among them based on the comparison criteria, then 

predicted  the values for the next 5 days,   R - 4.2.2 software was used in all of these 
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tests and predictions Statistical results indicated that the optimal model to represent 

the data series is ARFIMA (3,0.383,2)  which used  to predict future values. 

Keywords: Time Series Models, Forecasting, Fractionally Difference, ARFIMA 

models, Stock Market prices. 

1. Introduction 

A time series is a set of observations generated sequentially over time. (Box, Jenkins, 

Reinsel, & Ljung, 2016) Time series modelling is a dynamic research area which has 

attracted attentions of researchers’ community over last few decades. The main aim 

of time series modelling is to carefully collect and rigorously study the past 

observations of a time series to develop an appropriate model which describes the 

inherent structure of the series. This model is then used to generate future values for 

the series, to make forecasts. Time series forecasting thus can be termed as the act of 

predicting the future by understanding the past. (Adhikari, 2008; Raicharoen, 

Lursinsap, and Sanguanbhokai, 2003). 

The time series data is visualized and analyzed to find out mainly three things, trend, 

seasonality, and heteroscedasticity. (Bharatpur, 2022). 

There are several models in the time series including Autoregressive Integrated 

Moving Average (ARIMA), Seasonal Autoregressive Integrated Moving-Average 

(SARIMA), Seasonal Autoregressive Integrated Moving-Average with Exogenous 

Regressors (SARIMAX), Vector Autoregression Moving-Average (VARMA), 

Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX), 

Autoregressive Fractional Integrated Moving Average (ARFIMA).    From several 

time series models, the Autoregressive Fractional Integrated Moving Average 

(ARFIMA) is a model that is able to capture extreme fluctuations and long memory 

by using the fractionally difference (d) instead of integer which used in ARIMA 

model when the dataset nonstationary, this happens if the case under study 
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experiences a continual change over time. (Burnecki, Sikora, 2017; José, Belbuteab, 

Alfredo& Pereirac,2015; Kartikasari, 2020; Kartikasari, Yasin, & Maruddani, 2020;) 

The aim of this study is examining the effectiveness of Autoregressive Fractional 

Integrated Moving Average (ARFIMA) models in modelling Saudi stock market 

price index and select a good model to predict the future prices. The questions which 

we want to answer are, how to use the ARFIMA models in time series modelling? 

and how to choose the best model for forecasting?   

2. Literature Review 

2.1. Historical Background 

The ARFIMA (p,d,q) process was first introduced by Hurst in (1951),in the field of 

hydrology, then by  Granger and Joyeux in (1980), and Hosking in (1981).The most 

useful feature for this process is the long memory. Long memory means the effect of 

a shock is permanent and affects all future values of the time series, this property is 

reflected by the hyperbolic decay of the autocorrelation function or by the 

unboundedness of the spectral density function of the process. While in an ARMA 

structure, the dependency between observations decays at a geometric rate, Geweke 

and Porter-Hudak (1983) also found ARFIMA models useful for forecasting other 

leading indicator series.  

Several studies using this method in predicting an event in some fields such as 

economics, agriculture, health, hydrology and finance: 

• Granger and Joyeux (1980) used a fractionally differenced model with no short-

term components to model the US monthly index of consumer food prices for the 

period January 1947 to June 1978, based on minimizing the 10-step-ahead 

forecast errors, they estimated d to be approximately 0.35, after first differencing 

the original time series. (Granger, and Joyeux, 1980). 
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• Sowell (1992) applied the ARFIMA process to correctly model the trend 

behaviour of the postwar US real GNP data. This time series has sample size equal 

to 172 observations and the author compared test of hypothesis using fractional 

and non-fractional ARIMA processes in modelling the long-run behaviour of the 

series. (Sowell, 1992b). 

• Sahed Abdalgader and Mkidiche Mohammed (2014): In their study, they have 

dealt with the oil price model using long memory models (ARFIMA) to forecast 

oil price during the twelve coming months starting from January until December 

2014. (Abdalgader, & Mohammad, 2014). 

• Shadi Eltilabani and Mohammed Elsoas (2016) investigated the use of ARFIMA 

model as in predicting indicator of Food and Agriculture Organization, using the 

data from the interval (Jan 1990 to May 2014) they determined the value of the 

fractional difference parameter (d=0.418), the results of their research indicated 

to a rise in the prices during the period June/2014 to December/2014. (Eltelbany, 

& Elsoase, 2016). 

• Kartikasari, P., Yasin, H. & Maruddani, D. A, (2020) are used ARFIMA model 

to predict numbers of death cases.   The results of this study prove that ARFIMA 

(1,0.431,0) is the best model to predict data on the addition of new cases of 

patients dying from COVID-19.   (Kartikasari, Yasin & Maruddani, 2020). 

• Saif Adnan Salmana, Emad Hazim Aboudi  (2022), in their study A hybrid 

ARFIMA-fuzzy time series (FTS) model for forecasting daily cases of Covid-19 

in Iraq;  they  proposed hybrid model  (ARFIMA-FTS) by combining the 

predictions of the (ARFIMA) model of the original series with the predictions of  

the model (FTS) for the residual series, to forecasting daily cases of Covid-19 in 

Iraq , for the period from 24/2/2020 to 11/8/2021 .( Salman, & Aboudia, 2022). 

• Monge & Gil-Alana (2021); and Monge, & Infante. (2022) also used ARFIMA 

model to predict Crude oil prices.  
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2.2. ARFIMA process 

Given a discrete time series process 𝑦𝑡 with autocorrelations function  𝜌𝑗  at lag j. 

the process possesses long memory or is long-range dependent if the sum of the 

absolute autocorrelations was infinite (decaying to zero slowly at a hyperbolic rate). 

(Saber & Saleh, 2022). 

lim
𝑡→∞

∑|𝜌𝑗|

𝑡

𝑗=0

= ∞                                       (2.2.1) 

* Definition: 

   Firstly, remember ARIMA (0,1,0) process, (𝑦𝑡)  defined by 

∇𝑦𝑡 = (1 − 𝐵)𝑦𝑡 = 𝜀𝑡                           (2.2.2) 

For any real-valued d, a fractionally differenced white noise (FDWN) process {𝑦𝑡} 

is defined by 

∆𝑑𝑦𝑡 = (1 − 𝐵)𝑑𝑦𝑡 = 𝜀𝑡                      (2.2.3) 

where ∆ and B denotes the differencing and backshift operators respectively and the 

sequence {𝜀𝑡} is a white noise process. 

The differencing filter (called the long-memory filter, LMF) can be expanded as 

(1 − 𝐵)𝑑 = 1 − 𝑑𝐵 +
𝑑(𝑑 − 1)𝐵2

2!
−

𝑑(𝑑 − 1)(𝑑 − 2)𝐵3

3!
+ ⋯

= ∑ 𝜋𝑖𝐵𝑗

∞

𝑗=0

        (2.2.4) 
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• When d < 1/2, {𝑦𝑡} is a stationary process with the infinite moving average 

representation ((using the notation of Granger and Joyeux)) 

𝑦𝑡 = ∑ 𝜑𝑗𝜀𝑡−𝑗    ,         (2.2.5)      𝜑𝑗

∞

𝑗=0

=
Γ(𝑗 + 𝑑)

Γ(𝑑)Γ(𝑗 + 1)

= (𝑗 + 𝑑 − 1)!

𝑗! (𝑑 − 1)!
                                      (2.2.6) 

𝜑𝑗~
𝑗𝑑−1

√𝑑
         𝑎𝑠 𝑗 → ∞ ,   

• When d > -1/2, {y} is invertible with the infinite autoregressive representation. 

𝜋(𝐵)𝑦𝑡 = ∑ 𝜋𝑗𝑦𝑡−𝑗 = 𝜀𝑡

∞

𝑗=0

                                                           (2.2.7) 

𝜋𝑗 =
−𝑑(1 − 𝑑) … … (𝑗 − 1 − 𝑑)

𝑗!
=

(𝑗 − 1 − 𝑑)!

𝑗! (−𝑑 − 1)!
                              (2.2.8) 

𝜋𝑗 = ∏𝑡=1
𝑗 𝑡 − 1 − 𝑑

𝑡
=

Γ(𝑗 − 𝑑)

Γ(−𝑑)Γ(𝑗 + 1)
         , 𝑗 = 1,2, …    (2.2.9) 

 

𝜋𝑗  ~ 
𝑗−𝑑−1

Γ(𝑑)
   ,     𝑎𝑠     𝑗 → ∞ , 

• When −
1

2
< 𝑑 <

1

2
  y  is a stationary and invertible process. 

• When 0 <  𝑑 <  1/2. The process is stationary with long-memory and is useful 

in modelling long-range persistence. The autocorrelations and impulse 

responses are all positive and decay at a slow hyperbolical rate. 

•  -1/2 < d < 0, The autocorrelations are all negative and decay hyperbolically, and 

the process has short memory and is said to be anti-persistent. 
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17 
 

International Journal for Scientific Research, London Vol (3), No (8), 2024    
https://doi.org/10.59992/IJSR.2024.v3n8p1      E-ISSN 2755-3418 
 

• When d=0.5 the process is non-stationary and invertible. 

• When d= -0.5 the process is stationary and not invertible. (Hosking, 1981).                                                           

2.3. Test of Long Memory 

2.3.1 Graphical test:  Autocorrelation plot (ACF Plot): 

The autocorrelation function measures the degree of correlation between 

neighbouring observations in a time series. if the ACT plot follows an as asymptotic 

hyperbolic or decay very slowly, the series has a long memory, mathematically the 

form of ACF in the ARFIMA model : (Ocker, 2014). 

𝜌𝑗 =
Γ(1 − 𝑑)Γ(𝑗 + 𝑑)

Γ(𝑑)Γ(𝑗 − 𝑑+)
                                                                 (2.3.1) 

𝜌𝑗~
Γ(1 − d)

Γ(d)
𝑗2𝑑−1    ;  −0.5 < 𝑑 < 0.5 ;    𝑗 → ∞ 

2.3.2 Statistical tests: 

* R/S Statistic: 

One of the oldest methods is the rescaled-range, or simply R/S, statistic. This 

measure was firstly introduced by Hurst (1951) and then developed and refined by 

Mandelbro and Wallis (1968). The R/S statistic corresponds to the range of partial 

sums of deviations of a time series from the mean, rescaled by its standard deviation. 

Therefore, In order to evaluate the R/S statistic use this form (2.3.2.1) 

𝑄𝑛 =
𝑅𝑛

𝑆𝑛
=

max
1≤𝐾≤𝑡

∑ (𝑦𝑗 − �̅�𝑛)𝑘
𝑗=1  − min

1≤𝐾≤𝑡
∑ (𝑦𝑗 − �̅�𝑛)𝑘

𝑗=1

[
1
𝑛

∑ (𝑦𝑗 − �̅�𝑛)𝑘
𝑗=1 ]

1
2

      (2.3.2.1) 

Where  𝑦 ̅ is the sample mean of the data set. 

𝑆𝑛 is standard deviation. 
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The first bracketed term is the maximum of the partial sums of the first (𝑘) deviations 

of (𝑦𝑗) from the full-sample mean, which is non-negative. The second bracketed term 

is the corresponding minimum, which is non-positive. The difference of these two 

quantities is thus non-negative, so that 𝑄 𝑛 >  0. 

𝑅𝑛

𝑆𝑛
= 𝑛𝐻                                      ( 2.3.2.2) 

 H : is a Hurst exponent  and it is always lies in this interval : 0 < 𝐻 < 1 , then : 

𝐻 ≈
𝑙𝑜𝑔𝑄𝑛

log 𝑛
                              (2.3.2.3) 

If the H estimated value is 0.5 we can conclude that the process has short memory, 

if the estimate is within the (0.5,1) interval then it is a stationary process has long 

memory, the dependence is even stronger as H tends towards 1,  and if the H 

parameter is between (0,0.5), the process is anti-persistent. (Bourbonnais, & Maftei, 

2017). 

Many authors identify a relation between the H parameter and the differencing 

parameter d. In case of an infinite variance process the relation is given by   𝐻 =

 𝑑 + 
1

𝛼
   

but in the case of a finite variance process, the relation is simply 𝐻 =  𝑑 + 
1

2
. 

* LO Statistic:  

LO is a methodology to estimate the H parameter was developed and implemented. 

However, many authors, namely Lo (1991), point out the incapacity of this statistic 

to distinguish between long and short memory. Therefore, and to overcome the lack 
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of robustness of the R/S statistic, Lo Statistic is   different from the previous one 𝑄𝑛 

by its denominator, which takes into account not only the variances of individual 

terms but also the autocovariance weighted accordingly to differences of q  . 

Q̃n

=
max

1≤𝐾≤𝑛
∑ (𝑦𝑗 − �̅�𝑛)𝑘

𝑗=1  − min
1≤𝐾≤𝑛

∑ (𝑦𝑗 − �̅�𝑛)𝑘
𝑗=1

[
1
𝑛

∑ (𝑦𝑗 − �̅�𝑛)
2

+
2
𝑛

∑ 𝑤(𝑞)(
𝑞
𝑗=1

𝑛
𝑗=1 ∑ (𝑦𝑗 − �̅�𝑛)(𝑦𝑖−𝑗 − �̅�𝑛))𝑛

𝑖=𝑗+1 ]

1
2

        (2.3.2.4) 

Where  𝑦 ̅ is the sample mean, also weighted 𝑤𝑗(𝑞) given by: 

 𝑤𝑗(𝑞) = 1 −
𝑗

𝑞−1
   ,   𝑞 < 𝑛                      (2.3.2.5) . 

Lo (1991) [23] proposed the following rule for q: 

𝑞 = [(
3𝑛

2
)

1
3⁄

(
2�̀�

1 − �̀�
)

2
3⁄

]                                                                                      (2.3.2.6) 

�̀�  : estimation of the autocorrelation coefficient of order 1  

Lo proves that under the hypothesis 

𝐻0 ∶   𝑥𝑡 ⇒  𝑖. 𝑖. 𝑑. (0, 𝜎𝑥
2) 

and for n which tends towards the infinity, the asymptotic distribution of  �̃�𝑛  

converges step by  step towards  𝑣𝑐𝑎𝑙  =
�̃�𝑛

√𝑛
~𝑉  where 𝑉  is the rank of a Brownian 

bridge, a process with independent Gaussian increases constrained to unity and for 

which H = ½.  The density function of the random variable V in equation (2.3.2.7) ( 

Bourbonnais,  & Maftei, 2017) 

https://doi.org/10.59992/IJSR.2024.v3n8p1


 

20 
 

International Journal for Scientific Research, London Vol (3), No (8), 2024    
https://doi.org/10.59992/IJSR.2024.v3n8p1      E-ISSN 2755-3418 
 

fv(v) = 1 + 2 ∑(1 − 4k2 v2). e−2(k,v)2

∞

k=1

             (2.3.2.7) 

The calculation of H is done as above, and Lo analyzes the behaviour of 𝑄�̃� under 

alternative long-term dependency. He then shows that:     

𝑣𝑐𝑎𝑙  =
�̃�𝑛

√𝑛
→ {

∞ … . 𝑝𝑜𝑢𝑟𝐻 ∈ (0.5,1)
0. . . 𝑝𝑜𝑢𝑟  𝐻 ∈ (0, 0.5)

 

𝐻0=the process has short memory, (h=0.5) 

𝐻1 =the process has long memory. 

We accept null hypothesis at significant 0.05, if  𝑉 ∈

 [0.809 , 1.862]. (Bourbonnais, & Maftei, 2017) 

2.4. Estimate the Parameters of Model:  

* Maximum Likelihood method: 

Because it has many nice properties the ML has been widely used in estimation, it is 

a best method to estimate fractional parameter (d) .in this method (d) is estimated 

with (∅ 𝑎𝑛𝑑 𝜃)- the auto regressive and moving average parameters –at the same 

time. 

*Semi parametric methods:  

 And there are also some semi parametric methods like: 

• Periodogram Regression method or (GPH method) 

• Smooth Periodogram estimator or ( dSperio method) 
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  These methods estimate the fractional parameter (d), and then the other parameters 

are estimated by the classical method (Box, and Jenkins method).  

3. An Application: 

As an application, we used the daily closing index data of the Saudi Arabia Stock 

Market Prices (SSMP) from the period 1/1/2018 to 19/12/2022, the original time 

series with 1240 observations . 

3.1.  Descriptive Statistic of Data 
 

Table 1. descriptive statistic of SSMP series 

Variable Obs Mean Std.dev Min Max 

SSMP 1240 9305.782 1836.731 5959.69 13820.35 

 

 
Figure 1. histogram of SSMP series, output from R- 4.2.2  program 

https://doi.org/10.59992/IJSR.2024.v3n8p1


 

22 
 

International Journal for Scientific Research, London Vol (3), No (8), 2024    
https://doi.org/10.59992/IJSR.2024.v3n8p1      E-ISSN 2755-3418 
 

The simple graph of series in (Figure 2), shows that the series is non-stationary, and 

it has trend and random fluctuations.  

 
Figure 2.  SSMP series plot, output from R- 4.2.2 program 

3.2.  Statistical Test of Stationary 

The Augmented Dickey–Fuller (ADF) test (Dickey, & Fuller, 1979), and Phillips–

Perron (PP) test (Phillips, & Perron,1988), they are used to stationary test  , where 

the null hypothesis is the presence of a unit root and the alternative hypothesis is the 

stationary for the series, table.2 is showing  the results for the tow tests ,  it can 

observed that,  for both tests we cannot reject the null hypothesis at 5% of 

significance  level, indicating that the SSMP series   has a unit root. 

Table 2. test of stationary for SSMP, output from R- 4.2.2 program 

Augmented Dickey-Fuller Test p- value = 0.7754 

Phillips-Perron Unit Root Test p- value = 0.8149 
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3.3.  Long Memory Test 

The next step is to identify the long memory, this is done to see whether there is a 

long memory effect (long-term dependency) or not. The way to do this is to observe 

autocorrelation function (ACF) plot in Figure3. The (ACF) decays very slowly that   

indicates the long memory pattern in the data.  

 

 

Figure 3. ACF&PACF plot for SSMP series, outputs from R- 4.2.2 program 

 

To confirm this test, we calculate Hurst Exponent from R/S statistic by using (R- 

program)  

𝐻 =  0.8835265 ;   𝐼𝑡 𝑙𝑖𝑒𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0.5 𝑎𝑛𝑑 1 

 that indicates to long memory process. 

3.4.  Estimate d- Parameter 

According Hurst Exponent: d = ℎ − 0.5 = 0.3835265 ; by using (R- program) the 

maximum likelihood method estimated   (d=0.4999) . GPH method and dSperio 

method gave (d estimator) greater than 0.5. 
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We take tow estimators for d.   d= 0.4999 and d= 0.3835265, 

After taking fractional difference, the series is be stationary , the graphs in figure4 

and figure5 , and  ADF ,  PP  tests which illustrated in table3   are  indicating  that . 

 
Figure 4. Time series plot after taking the fractional difference, 

when d=0.4999, output from R- 4.2.2 program 
 

 
Figure 5. Time series plot after using the fractional difference, 

when d=0.3835, output from R-4.2.2 program. 
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Table 3.  test of stationary after taking the fractional difference 

output from R-4.2.2 program 

Test Dif0.3835 series Dif0.4999 sreies 

Augmented Dickey-Fuller Test p- value = 0.01804 p- value = 0.01 

Phillips-Perron Unit Root Test p- value = 0.01 p- value = 0.01 
 

3.5.  Model Identification and Estimation 

Now we have two good estimators ford (0.376106, and 0.49967) ,in this step  we 

shall   determine the order  of  autoregressive and moving average (p and q) and 

identify  models specifications  , and  select the best model  according to : 

1- Most significant coefficients. 

2- Lowest volatility. 

3- Highest log-likelihood statistic.  

4- Lowest Akaike Information Criteria (AIC). (Akaike, 1973) 

Among all the models, the models with the most significant parameters are presented 

in table 4 bellow.  

Table 4.  output from R- 4.2.2 program 

Model (p,d,q) Sigma(eps) Log-likelihood AIC 

Model1 (2,0.49,1) 94.6289 -7402.381 14816.4 

Model2 (3,0.38,2) 94.2745 -7397.408 14808.8 

It can noted that   model2 has minimum AIC value and sigma value and it has highest 

log-likelihood value, then model2 is  better , model2 parameters  are presented in 

table 5. 

Table 5. model2 parameters. output from R- 4.2.2 program 

ARFIMA ar1 ar2 ar3 ma1 ma2 

(3,0.38,2) 0.713847 0.49097 -0.21753 -0.09409 0.416499 
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3.6 Diagnostic Tests 

After getting the best ARFIMA model, the next step is checking the diagnosis, testing 

the residuals to see whether the residuals series achieve the assumption of a white 

noise, and it has a normal distribution. 

A white noise test is performed on the residual after fitting the ARFIMA (3, 0.38, 2) 

model.  (Ljung –Box) test is performed (Box, & Price, 1970), it gave (p 

value=0.1207) greater than 0.05, that the residuals series haven’t correlation, and   

The autocorrelation and partial autocorrelation function graphs of the residual series 

are shown in Figure 6.  It can be seen that the residual series is a white noise, 

indicating that the model is valid, although it was not passing the normality test.   

Table 6.  ARFIMA Model Residual, White Noise Testing, 

output from R 4.2.2 program. 

Box-pierc test 

data: residuals(model2) 

X-squared = 21.6, df=15, p-value=0.1207 

Nill hypotheses: uncorrelated 

 

 
Figure 6.  Autocorrelation and partial autocorrelation function graphs of the residuals series 

output from R 4.2.2 program 
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 3.7.  Forecast: 

The results from ARFIMA model (3,0.383,2) yielded forecasting for the next 5 

periods presented in table 7, figure 7 illustrated the predictive values were consistent 

with the original values for the series. 

Table 7. Forecast results for ARFIMA (3,.383,2) model, output from R 4.2.2 program. 

Date  Forecast 

value 

Lo 80             Hi 80           Lo 95 Hi 95 

 

20/12/2022 10167.77 10041.151 10294.39 9974.124        10361.41 

21/12/2022 10152.10 9955.180           10349.02 9850.936        10453.27 

22/12/2022 10137.47 9886.738         10388.21 9754.006        10520.94 

25/12/2022 10122.91 9821.702 10424.12 9662.252        10583.57 

26/12/2022 10108.97 9761.312 10456.64         9577.270        10640.68 

 

 

Figure 7.  forecasts series from ARFIMA (3,.38,2) model, and SSMP series, output from R 4.2.2 

program 
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4. Conclusions 

In this paper has been used analysis for time series of daily closing index for Saudi 

Stock Market Price form (1.1.2018 to 19.12.2022) to make a good model for 

prediction, The result showed that the series data is non-stationary, and it has long 

memory; comparing the results of tow long memory models, ARFIMA (2,0.49,1) 

and ARFIMA (3,0.383,2), to select a good model according to some criteria’s, AIC 

value and sigma value and log-likelihood value. 

The study has been shown that ARFIMA (3,0.383,2)  model is the most appropriate 

model and fits for future prediction with Saudi Stock Market Prices.  The predictive 

values were consistent with the original values for the series which indicate model  

is efficient.  

The series data was taken from website: https://sa.investing.com/indices/tasi-historical-data. 
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