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Abstract 

By utilising the multi-tenancy characteristic, cloud computing promises to reduce 

expenses through less spending on hardware, infrastructure, and software. Even with 

all of its advantages, multi-tenancy poses hazards for cloud computing. Without 

suitable cloud security solutions, security concerns might end up being the main 

factor delaying adoption. Additionally, multi-tenancy enabled by virtualisation, 

which is one of the key elements of a cloud, creates significant security 

vulnerabilities and does not provide adequate isolation between various instances 

running on the same physical system. The three strategies we suggest to secure 

shared virtualised systems against microarchitectural attacks are presented in this re- 

search as a comprehensive solution. This includes experiments for combining the 

three approaches and assessing them in potential operational contexts. The 

assessment techniques have used several host systems to assess the system 

overhead, CPU usage, and protection accuracy. The studies we have conducted on 

both Debian 10 and Ubuntu 18.04 LTS physical servers utilising the KVM 

hypervisor demonstrate that our comprehensive protection can identify attacks with 

about 97% accuracy, and depending on how many mechanisms were used in the 
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various experimental scenario settings, the proportion of CPU consumption has 

varied significantly. The CPU usage rate in experiments with different scenarios has 

ranged from 27% to 68%, while the average system load over 5 minutes has ranged 

from 1.40 to 4.2. This shows our proposed mechanisms are subject to refinement 

and enhancement, especially in cases that require a high processing load. Note that 

if we had used servers with more computing power, the results would certainly have 

been better. 

Keywords: Cloud Computing, Flush+Reload, Flush+Flush, Microarchitectural 

Attacks, Prime + Probe. 

1. Introduction 

Cloud computing technology substantially benefits businesses and organisations due 

to its cost efficiency, scalability, and flexibility [1]. According to Gartner [2], cloud 

computing is among the top ten most important and promising components of 

technology [3]. Multi-tenancy technology is an essential feature of a cloud. Cloud 

providers can maximise resource usage by dividing a shared virtualised 

infrastructure across several users, lowering costs [1]. Automatic resource 

allocation algorithms are used by cloud computing providers, establishing two or 

more VMs associated with unique clients sharing the same physical machine’s 

resources [4]. However, sometimes, a malicious user may share access to the cloud’s 

resources using allocation algorithms or VM placement policies to co-locate their 

VM with the target VM on the same physical server. In such a scenario, co-resident 

attacks and microarchitectural attacks may be used to violate confidentiality [5]. 

Despite all the benefits of multi-tenancy, it also introduces new vulnerabilities to 

cloud computing. Security concerns might become the main obstacle deterring 

adoption due to the lack of suitable comprehensive security solutions developed for 

the cloud [1], [6], [7], [8]. Even though there have been numerous methods 
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proposed [9], [10], [11], [12], [13], [14], [15] to reduce the risks of this kind of attack, 

these methods have certain limitations related to how a mechanism to detect or 

protect the data operates, how many attacks can be detected using these mechanisms, 

what actions will be taken after spotting potentially suspicious behaviour, the 

accuracy of threat detection, and who is in control of detection and protection 

operations. We also believe that everyone who uses shared virtualised environments 

must secure data. It is therefore necessary to find integrated solutions that are 

trustworthy, high in accuracy, and have acceptable performance in order to design 

an environment with the fewest threats that could potentially compromise the 

security and privacy of all users of shared virtualised environments. 

We address these limitations of current mitigation solutions by introducing a diverse 

and comprehensive detection and protection system that protects against cache side-

channel and microarchitectural attacks. Our mechanism works at the level of VMs 

and host machines. The VM can provide self-protection by using the memory 

deduplication feature to monitor malicious activities targeting shared cryptographic 

libraries and programs, obfuscating the attack results. Also, the host protects the 

shared virtualised system by relying on hybrid analysis processes, namely dynamic 

analysis, to monitor suspicious activities by analysing hardware performance 

counters. It also uses static analysis to extract executable files from RAM images of 

the suspicious. 

VM to be checked against implicit attack characteristics (opcodes) using reverse 

engineering tools. Then, the threat level of the VM is determined using a Softmax 

classification algorithm. The proposed mechanism periodically scans the disk images 

of VMs to ensure their integrity in terms of the presence of executable files that 

contain implicit attributes of microarchitectural attacks. Our approach has diverse 

lines of defence that are difficult for attackers to penetrate and bypass. It can also 

work in a shared virtualised system with acceptable performance and high accuracy. 
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The main contributions of our paper are as follows: 

1) We present a holistic, integrated mechanism for protection against 

microarchitectural attacks from within the victim VM and the local host. 

2) We introduce the design and implementation of the protection method. 

3) We evaluate the method in multiple scenarios in terms of attack detection 

accuracy and performance characteristics. 

The remainder of this paper is organised as follows. Section 2 provides the 

background to the work. In Section 3, we explain and analyse the problem. Section 

4 describes the proposed protection method. Section 5 provides an overview of our 

experiments using the new methods. In Section 6, we discuss the evaluation of the 

implemented methods. Section 7 compares our methods to related works. Finally, 

Section 8 provides a brief conclusion and makes suggestions for future work. 

2. Background 

2.1 Microarchitectural Attacks: 

This section reviews microarchitectural attacks that threaten shared virtualised 

systems due to the nature and structure of those systems. Microarchitectural attacks 

share certain properties, techniques, and attack environments. 

2.1.1 Cache Side-channel Attack:  

These attacks target the shared cache memory between users’ VMs in virtualised 

systems, where the attacker analyses the timing information gained from retrieving 

data from the shared cache and the main memory [16]. When the CPU requires data 

to execute such instruction, the CPU can find the data in the cache or the main 

memory. If the data is retrieved from the cache, the CPU cycles (CPU clocks) would 

be low; however, if the data is not cached then it must be retrieved from the main 
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memory, ensuring relatively larger CPU cycles are consumed to retrieve it. Then, 

the required data will temporarily remain in the cache memory to improve the system 

performance if the data is needed next time. Therefore, the attack technique 

exploits the time difference between retrieving the data from the cache (Cache hit) 

and the main memory (Cache miss) [17]. 

The attackers use timing information to launch attacks on the victim’s VM using 

the cache hits and cache misses to measure the CPU cycles or the time to recover 

the cache memory’s targeted addresses. In this attack, the attacker can break the 

isolation between VMs, uncover the victim’s actions, obtain information about 

cryptographic operations, and then break the encryption key, such as by using timing 

information in the Table Lookup implementation of AES. In the following 

explanation, we discuss three primary methods that can be used to leverage cache 

memory and extract sensitive data. 

• Prime + Probe: In this method, the attacker’s VM fills the cache lines with data. 

The victim is then given time to carry out certain encryption processes. The 

attacker’s VM then calculates the retrieval time for previously loaded data. The 

attacker will then be able to identify the cache lines utilised in the victim’s 

encryption operations as they will know what data has been deleted from the cache 

memory. Neither shared libraries nor page deduplication are necessary for this 

method. 

• Flush + Reload: The attacker takes several steps to execute this type of attack, 

taking advantage of shared resources and memory deduplication, as shown in 

Figure 1. The attack is carried out with the following steps: (1) In the beginning, 

the victim can use the shared program that contains a number of sensitive 

operations and functions that are loaded into the shared cache by simply entering 

one of them and executing one of the functions. (2) The attacker evicts these 
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physical addresses from the cache memory by using the flush command (clflush) 

to ensure that the addresses will be retrieved from the main memory if requested 

next time, as a trap for the victim to find out the data retrieved and stored in the 

cache memory, if the victim used one of these addresses. (3) The victim may use 

one or more of the sensitive program’s functions, and as soon as the victim uses 

one of them, it will be restored to the cache memory. That means that the victim 

has actually fallen into the trap set by the attacker. (4) The attacker retrieves all 

the addresses that have been flushed while keeping track of how long it takes to 

retrieve each of these addresses using Time Stamp Counter (rdtsc). (5) The attacker 

analyses the results. If the retrieval time for any of the physical addresses is longer 

than the specified threshold, this means that none of them were used. However, 

if the retrieval time for any of them was less than the threshold, this means that it 

was used in the sensitive operations. 

• Flush + Flush: In this method, the attacker’s VM first flushes the required memory 

lines out of the cache. After that, it gives the victim a period to perform encryption 

operations. Next, the attacker’s VM flushes the previous memory lines again and 

measures the flush instructions’ execution time, by- passing direct cache accesses. 

This technique relies on shared libraries and memory deduplication. 
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Figure (1): Cache Side-Channel Attack 

2.1.2 Spectre Attack: 

The Specter Attack exploits an essential optimisation technique adopted by modern 

CPUs called ’speculative execution’. Speculative execution occurs when a CPU 

retrieves data that will likely be required later, rather than waiting until it requires 

it. The attacker can observe the data from regions not allowed to be accessed in the 

memory, which leads to revealing the victim’s process. To perform the attack, first 

the attacker performs flush instructions to evict the desired cache lines and the 

target branch instruction address. The attacker often affects the CPU branch 

predictor using proper inputs for the conditional branch. After this, the attacker 

inputs an invalid value for the conditional branch to cause an incorrect prediction, 

thereby loading sensitive data into the shared cache. Finally, the attacker observes 

and keeps track of the access times of the cache lines. If certain cache lines have 

a short access time, the data is considered sensitive [18], [19]. 

2.1.3 Meltdown Attack:  

Meltdown is a microarchitectural attack that abuses speculative execution features 

in modern CPUs to leak data that is stored in kernel memory. Meltdown is similar 
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to a spectre attack except that it does not rely on branch prediction and aims to 

read the kernel memory from the userspace [18]. The attacker achieves a meltdown 

attack in the following manner. First, the attacker runs a code to read a byte (secret 

value) from privileged memory to implement a faulting instruction that will throw 

an exception of a segmentation fault. Although it throws the segmentation fault 

exception, the byte (secret value) is in the cache after the attacker multiplies the 

byte, the cache page size, and uses it as an index into the allocated memory block. 

After this, the attacker iterates through and observes the time taken to read, thus 

revealing confidential data [20]. 

2.1.4 Rowhammer Attack: 

The rowhammer attack approach exploits the electrical interaction of the DRAM 

rows with each other, causing them to leak part of the charge when continuously 

accessing adjacent rows. The attacker takes advantage of this point by repeatedly 

accessing a DRAM row until it causes the bit to flip from one to zero or vice versa. 

The attacker takes the following steps to carry out this attack. First, the attacker 

selects a DRAM row next to the DRAM row to be flipped. After this, the attacker 

repeatedly accesses the DRAM row to affect the adjacent rows, thus leaking their 

charge. Finally, the attacker evicts the accessed DRAM out of the cache to guarantee 

subsequent access to the DRAM row [21]. 

2.2 Microarchitectural Attacks Characteristics: 

The implicit characteristics of microarchitectural attacks explain how these attacks 

have been designed and how they work. Figure 2 shows the characteristics of 

microarchitectural side-channel attacks (opcode). As described by Irazo- qui et al. 

[22] [23], the code and programs of microarchitectural side-channel attacks contain 

implicit characteristics and instructions that may distinguish them to some extent, 

which leads to them being revealed when analysing the attacks’ codes. Table 1 shows 
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a set of characteristics (opcodes) of microarchitectural attacks and their functions, as 

well as the microarchitectural attacks that use them. 

The attacker is likely to misuse unprivileged information and legal use instructions to 

launch microarchitectural side- channel attacks. This information can help the attacker 

to design and program attack scripts by utilising instructions that can evict the cache 

memory, measure time for retrieving data precisely, lock the memory bus, and bypass 

cache access, as shown in Figure 2. All these scripts are then compiled into 

executable files within shared virtualised environments to perform attacks. However, 

identifying these scripts is possible through disassembling the executable files of the 

attack and recognising the interior implicit characteristics and instructions related to 

how they have been built. 

Microarchitectural attacks comprise certain characteristics that need to be 

incorporated in their design. Below we review these characteristics, as discussed in 

[22] and [23]. 

Table (1): Microarchitectural Attacks Characteristics 
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• High-Resolution Timers: As shown in Figure 2 (lines 7 and 12), a set of 

microarchitectural attacks rely on timing information for retrieving data from the 

cache, the RAM, the last level of cache, and the first and second level cache 

precisely. Hence, the use of an instruction is required, such as a Time Stamp 

Counter (rdtsc), that records the timing information efficiently and has adequate 

precision to distinguish between data retrieval times. 

• Memory Barriers: As shown in Figure 2 (lines 5, 6, 8, and 11), memory barriers 

include two types of instructions: mfence, and lfence. The attacker may use these 

instructions to serialise all store and load activities before mfence and lfence 

instructions in the program instruction stream. In other words, these instructions 

can be used to suspend out-of-order execution and collect precise timing 

information for retrieving data from the cache and RAM. mfence and lfence 

instructions can also be included in an attack’s script [24], [25]. 

• Cache Evictions: As shown in Figure 2 (line 14), the attacker is able to exploit 

eviction instructions toevict the required cache line out of the cache using the 

Clflush instruction as a trap for the victim to retrieve data from the RAM, waiting 

for a while until the victim retrieves this cache line. Therefore, the attacker realises 

that the evicted and flushed cache line has been used by measuring the data retrieval 

time. The desired cache line is removed from the entire cache memory (all cache 

levels) using the Clflush instruction [26]. 

• Memory Access Lock: Attack scripts can also contain memory bus-locking 

instructions to ensure that the processor has exclusive ownership of the shared 

memory for the execution duration. The bus locking instruction consists of the 

Lock prefix and the following instructions: Lock prefix and the following 

instructions as ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, DEC, FADDL, 

INC, NEG, NOT, OR, SBB, SUB, XADD, XOR. However, the XCHG in- 
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struction does not require the Lock prefix [27]. 

• Non-temporal instructions allow the processor to not write data into the cache, thus 

directly retrieving data from the memory when requested. These instructions 

include monvnti and movntdq instructions [28], [29]. 

• CPU Affinity Assignment: Almost all microarchitectural attacks require CPU 

affinity to achieve cores- idency on the same CPU core to share a specific cache 

level with a target process. Therefore, the at- tack scripts may have function calls 

that accomplish CPU affinities, such as sched setaffinity [23]. 

• Instruction Iteration: Practically, in microarchitectural attacks, the attacker needs 

to repeat some of the instructions mentioned above to execute an attack 

successfully. Hence, some of these instructions may be placed inside aLoop. 

• Mmap () Function: Attackers use the mmap () function to load the target program 

into memory as a Read Only file. Then the memory deduplication feature scans 

and removes the replica files to be one copy shared between users; this is a 

critical requirement for the Flush+Reload and Flush+Flush attacks. 

 

 

 

 

 

 

 

Figure (2): Attack Characteristics snippet from [30] 
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3. Problem Definition 

Cloud computing relies on sharing computing resources over a network to reduce 

the cost of infrastructure. One form of sharing involves using a shared pool of 

applications and programs that may be sensitive, such as sharing cryptographic 

libraries using memory deduplication, which is a memory-saving feature used to 

optimise memory utilisation and allow an increase in the number of VMs on the 

same host. 

Despite the economic benefits of sharing computing resources, it is known to give 

rise to security risks if the resources are shared with malicious users. In such a case, 

the malicious users can exploit the shared resources on the same physical machine 

as a covert channel to launch microarchitectural attacks. In some cases, such side-

channel attacks are known to be able to crack most encryption algorithms, leading to 

confidentiality violations [5], [17], [30], [31], [32]. There are a number of 

countermeasures [9], [10], [12], [13], [14], [23], [33], [34] designed to mitigate 

microarchitectural attacks. Due to microarchitectural attacks relying on sharing 

computing resources, such as cache levels and instructions, to obtain the time 

difference of accessing data from cache and main memory, most existing defence 

methods are proposed based on eliminating imbalance, partitioning caches, avoiding 

colocation, or detecting malicious activities. However, they are also known to have 

significant shortcomings. First, when applied to cloud computing, significant 

changes are required to the computing infrastructure, which may hinder adoption by 

cloud providers. Also, some of these methods may cause system performance 

degradation and high overhead. They also have high false rates (either false positive 

or negative) in terms of detecting malicious activities. In addition, they need more 

diversity and comprehensiveness of protection against various types of 

microarchitectural attacks. Moreover, they do not provide systematic procedures to 

exclude a malicious VM after detection. Therefore, it is necessary to design a 
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protection system that integrates diverse lines of defence with acceptable 

performance and high accuracy, making penetration difficult and leading to 

bypassing of attackers. While achieving all this, a protection system must maintain 

the fundamental nature of shared virtualised systems and improve security controls 

at the same time as enhancing performance attributes. It is also essential to conserve 

the economic advantages of shared virtualised systems while reducing side-channel 

attacks and microarchitectural attack threats, as well as providing mechanisms to 

monitor VMs’ activities on the shared host. It is also necessary to design forensic 

workstations compatible with shared virtualised systems to analyse executable files 

of suspicious VMs and exclude any malicious VMs. 

4. Methodology 

The methodology used consists of a combination of three integrated methods that 

operate in shared virtualised systems. The first method [35] monitors and protects 

sensitive shared program functions (cryptographic libraries and shared executable 

files) within a VM. It also uses the memory deduplication feature to acquire attack 

readings and then analyses them using the logistic regression model. It can detect 

suspicious activities that sensitive shared programs are exposed to during execution 

of sensitive cryptographic operations in shared virtualised systems. Additionally, it 

can obfuscate the results of attacks obtained by the attacker. The method supports 

VMs to detect attacks by knowing the attacks’ readings, thus providing self-

protection for VMs. 

Assume that two VMs run in a shared virtualised system supporting the memory 

deduplication feature. One of the VMs is malicious and the other is a target or victim 

VM. The two VMs share the last level of cache on the same host and also share 

the same cryptographic libraries and executable files as a result of using memory 

deduplication, which deletes all replicas of executable files and retains only one 
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shared copy between them to save memory capacity. As shown in Figure 3, the VMs 

can access the shared memory and perform a flush-based cache attack in the system. 

The attacker conducts the flush-based attack (steps 1 and 6 in Figure 3). 

• The attacker defines the desired memory addresses related to the shared executable 

file’s target functions and flushes them out of the cache using the clflush instruction 

(the attacker may need to repeat flushing of the exact addresses multiple times to 

ensure the attack’s success). The flushed functions’ addresses are intended to be 

retrieved from the main memory when the victim requests and executes these func- 

tions. 

• Next, the attacker waits for the victim to perform encryption operations or execute 

sensitive data-related functions. Then the attacker reloads the flushed functions’ 

addresses and measures the access time (using the rdtsc instruction) to determine 

whether or not the victim has requested and executed those functions. 

The proposed protection mechanism includes the steps numbered 2, 3, 4 and 5 in 

Figure 3). 

• It obtains the shared functions’ addresses of executable files and cryptographic 

libraries to be mon- itored and shielded from flush-based cache attacks. 

• It recovers the monitored functions into the cache memory while measuring each 

function’s recovery time over each specified period. As a result, the functions will 

be reloaded and the detection mechanism will discover the flush instructions. The 

measurement uses rdtsc instructions that provide a high- resolution time stamp 

counter. It sets an iteration sample for the monitored functions to measure the 

recovery time frequently. It is then measured against the system’s threshold to 

detect whether flush in- structions have been conducted on the functions. As the 

detection mechanism accesses the addresses specified continuously to be 

monitored, the attack results are obfuscated, thus the attacker will record cache hits 
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for all the addresses monitored, even if the victim does not use them. 

• It records the number of flushes for each monitoring function and then analyses 

them using logistical regression. 

• It then warns the user in case of attack. 

The second method [36] is a mechanism for detecting and protecting against 

microarchitectural attacks inside the host. The technique is a dynamic and static 

analysis hybrid, as shown in Figure 4. The dynamic analysis monitors VMs’ activities 

in a virtualised system by obtaining readings from hardware performance counters 

relevant to the shared cache at runtime. Then, the activities of the VMs are 

classified as benign or suspicious after analysing the readings using a logistic 

regression model. When any suspicious activity is detected, the static analysis runs. 

The static analysis accesses the suspicious VM and extracts executable files from 

a disk and RAM images. It then examines whether these files contain opcodes of 

microarchitectural attacks. Based on the results, the threat level of these files is 

determined using a neural network classification model. 

The third method [44] is based on a combination of static analysis with the ClamAV 

application. The method runs periodically and VMs are randomly selected for 

testing. There are two types of scans: a microarchitectural attacks scan and an 

antivirus scan, as shown in Figure 5. The mechanism accesses the VM, extracts 

executable files, checks if they contain the implicit characteristics of a 

microarchitectural attack, and then analyses the results using a logistic regression 

model to detect whether there are any malicious files and whether they contain 

viruses. The scan is divided into two parts based on duration: a fast scan and a 

full scan. This method periodically scans a shared virtualised system to eliminate 

attack files and viruses and identify the malicious VM. The methods operate in 

tandem to provide adequate protection for a shared system. 
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Figure (3): Flush-based Attacks Detection Method 

 

Figure (4): The Dynamic and Static Analysis Protection Method 
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Figure (5): The Periodically Cleansing Method 

5. Experimental Setup 

We created shared virtualised systems and executed experiments with the QEMU-

KVM hypervisor that runs KSM as a memory-saving deduplication feature. As hosts, 

we used Ubuntu 18.04.5 LTS, which uses an Intel Core i5- 4200M CPU, and Debian 

10, which uses an Intel Core i5-4200U CPU. We then created two VMs on the 

same host. The VMs were running Ubuntu 18.04.5 LTS OS, with one VM as an 

attacker and the other as a victim. We installed several essential tools inside the 

VMs. For instance, the GDB (GNU Project debugger) tool facilitates finding the 

functions’ addresses of shared executable files, thus enabling monitoring of 

functions. We also installed AVML (acquire volatile memory for Linux) to capture 

the RAM status regularly. Moreover, we installed the Linux Perf, the Libguestfs 

Tool, the Linux Objdump Disassembler, Radare2, Volatility Tools, and ClamAV 
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inside the host. We conducted the attacks using the Mastik Tool designed by 

Yarom et al. [37]. We conducted experiments using this environment to evaluate the 

system’s overall performance and record the system load and CPU overhead. The 

mechanism integrates four mechanisms that may significantly impact a system. 

Thus, we decided to conduct experiments and record the effect. 

6. Experimental Results and Evaluation 

The experiments were conducted to assess the load on the system and the overhead 

of the CPU. Therefore, the experiments were performed with different scenarios, as 

follows: 

• Execution of an experiment on dynamic analysis mechanisms while we were 

conducting microarchi- tectural attacks. Only mechanisms for monitoring the 

activities of VMs were included in this experiment. The mechanism of the first 

method was combined with the mechanism of dynamic analysis in the second 

method, and the overhead of the processor was measured. 

• Execution of an experiment on the mechanisms of static analysis. The static analysis 

of microarchitec- tural attacks in the second method was combined with the static 

analysis of microarchitectural attacks in the third method. 

• Measuring the load on the system and the CPU’s overhead while operating all 

mechanisms. The dynamic and static analyses were implemented together. 

The load on the system and the overhead for the CPU were measured using the Linux 

Top tool, where the system load rate was recorded every 5 minutes, as shown in Table 

2. Also, the detection accuracy of the proposed mechanisms was averaged based on 

the detection accuracy experiments of all three methods. 

Based on the results shown in Figure 6, it was found that there is an increase in CPU 

usage and system load. However, the reason for this may be either the limited 
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computing power of the systems used, as we utilised an Intel Core i5 processor for 

both hosts, or the complexity of the code. The results will be better if a server with 

suitable computing capabilities is utilised in both cases. Moreover, the mechanism 

relies on dynamic analysis to determine whether any suspicious behaviours require 

static analysis to ensure the presence of attack files inside a suspicious VM. This 

condition may reduce overhead and improve performance. Also, the static analysis 

that is used to detect files of microarchitectural attacks scans VMs for long-term 

periods, rationalising the reliance on static analysis despite its importance in 

protecting a shared virtualised system. 

Figure 7 represents the normal distribution of system load and processor usage. The 

figure also shows the probability density of load and processor usage. Normal 

distribution was calculated by calculating the mean and standard deviation, and then 

the normal distribution was calculated using Microsoft Excel. We can also calculate 

the normal distribution after calculating the mean µ and standard deviation σ using 

the following equation: 
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Table (2): System Overhead 

 

 

 

 

 

 

 

 

 

 

 

7. Related Work 

Various prior works have focused on detecting and preventing microarchitectural 

attacks. This section reviews some of these previous studies. It clarifies numerous 

problems and limitations related to the studies that motivated us to focus on these 

limitations and consider them in our work. Irazoqui et al. [23] introduced MASCAT, 

a technique for detecting microarchitectural attacks using static analysis of the 

executable files associated with attacks. MASCAT detects microarchitectural attack 

instructions (opcodes) hidden inside executable files. MASCAT is similar to an 

antivirus appliance for scanning files, particularly before uploading and downloading 

software to an app store. However, MASCAT has several areas for improvement that 

may prevent it from being adopted as an appropriate solution for shared virtualised 
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systems, such as a high rate of false positives. Additionally, it results in substantial 

system overhead. Furthermore, it is limited to scanning executable files on a local 

device. It is sometimes not used to monitor the VM’s disk and RAM in real-time to 

detect and protect against attacks in shared virtualised systems. 

Additionally, Zhang et al. [14] presented CloudRadar, a detection mechanism used 

to significantly decrease cache- based side-channel attacks in cloud systems. It uses 

a combination of a signature and anomaly-based detection method supported by a 

hardware performance counter such as perf used in the Linux Kernel. CloudRadar 

uses a database to store signatures for use in comparison to identify suspicious 

behaviour. However, CloudRadar is unable to identify attacks that exhibit only minor 

changes from existing attacks because CloudRadar depends on signature-based 
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detection, so it can only specify a specific pattern of attack program behaviour. If 

there is even a slight change in the attack program’s behaviour pattern, the attack 

will be undetected, meaning that this method only detects attacks known with a 

specific pattern. 

Cho et al. [11] proposed a detection mechanism based on machine learning for 

monitoring cache side-channel attacks’ activities, classifying these attacks according 

to hardware performance counters’ results obtained in real-time. The approach relies 

on the Intel Performance Counter Monitor (Intel PCM) to get readings from five 

counters related to cache performance and provides an accurate detection rate. 

However, it requires remarkable adjustments to the Intel PCM tool. Furthermore, the 

method of Cho et al. assumes that the attacker’s VM must have privileged access mode 

to the resources, making the mechanism capable of monitoring the attacker’s activities. 

Also, Chiappetta et al. [10] proposed various detection approaches that detect Flush + 

Reload attacks’ activities in real-time by relying on the hardware performance events 

counter. Several of these approaches are based on machine learning algorithms. 

Nevertheless, the approaches are restricted in terms of implementation, meaning the 

approaches need to be expanded to cover more than one type of cache side-channel 

attack other than Flush + Reload attacks. 

One study [9] designed an attack detection based on the Gaussian anomaly detection 

algorithm. The proposed approach employs Intel Cache Monitoring Technology (Intel 

CMT) to obtain real-time hardware performance counter readings. This detecting 

technique generates accurate findings in a limited number of circumstances but is 

adversely influenced by background noise [13]. 

Another study [38] introduced a technique based on examining the opcodes of 

executable files obtained from VMs, particularly the VMs’ RAM image, using VM 

introspection tools. After that, it classifies the files using classification models to 
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determine which files are benign and which are malicious. However, the technique is 

unable to detect side- channel attacks. 

Several studies [33], [34] have proposed mechanisms that add noise to distract the time 

difference between the cache hit and the cache miss in shared systems, or they 

eliminate fine-grained timers using fuzzy timers instead of high-resolution clocks to 

deal with this risk. However, implementing these solutions is not attractive because it 

requires modifications to the hypervisor. Also, they are not feasible for applications 

that require fine-grained timing in- formation [39]. Additional solutions have been 

proposed to reduce the probability of sharing the same resources between the victim 

and the attacker by designing VM placement policies [40]. The fundamental concept 

is to restrict the number of servers allowed for each account to use, hence reducing the 

attacker’s exposure to target VMs. This policy increases the possibility of co-locating 

VMs associated with the same user account, making it challenging to complete co-

residence with the target VM. However, this policy has apparent limitations related to 

workload balance and power consumption [41]. Reducing the probability of sharing 

the same resources can be achieved by dividing the cache into several zones and 

assigning one for each VM, thus leading to partial isolation of VMs [42]. This approach 

may effectively isolate caches between distinct processes performing sensitive 

functions [43]. However, it limits the number of VMs that use a shared cache on the 

same host, and it requires significant changes in the current cloud model to be adopted 

effectively [41]. 

In brief, some of these methods need to be more com prehensive for an adequate 

number of cache side-channel attacks. Some of them are less attractive because they 

re- quire significant changes in the infrastructure of the shared virtualised system, and 

several of them also need to develop their results because they produce a high number 

of false- negative and false-positive results. Our work concentrates on protecting and 

detecting sufficient numbers of significant microarchitectural attacks with accurate 
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detection results and satisfactory system performance. 

8. Conclusion 

Cloud computing relies on sharing resources between users of the same physical 

machine to reduce costs by optimising and increasing utilisation. However, sharing 

these resources with malicious users may lead to confidentiality violations through 

co-residency attacks. These attacks may exploit sharing resources, such as cache 

memory, to reveal a legitimate user’s recent activities. Multiple techniques and 

factors can successfully be exploited to perform side-channel and other 

microarchitectural attacks. Therefore, there is still a risk despite all the benefits of 

sharing resources on the same physical machine. If this security risk is not properly 

and adequately mitigated, it could be the primary concern that obstructs cloud 

adoption. This paper has introduced the use of the three approaches to protect shared 

virtualised systems. These approaches provide self- protection for the VM on which 

they are used by monitoring activities within shared virtualised systems, determining 

the threat level of suspicious VMs, and providing periodic scanning of the virtualised 

system against microarchitectural attacks and viruses. 

We have proposed developing three methods to provide comprehensive and holistic 

protection for shared virtualised systems against microarchitectural attacks. The first 

method detects cache attacks using memory deduplication and a logistic regression 

model. The second method detects and pro tects shared virtualised systems against 

cache side-channel attacks by integrating a dynamic and static analysis and 

identifying the threat level of a particular VM by using machine learning algorithms. 

The final method periodically cleanses shared virtualised systems against 

microarchitectural attacks and viruses by analysing implicit attributes of 

executable files using a logistic regression algorithm comprised of ClamAV. 
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