

49

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

Integrated Protection Mechanisms for Mitigating

Microarchitectural Attacks in Cloud Computing

Abdullah Albalawi
Department of Computer Science, Shaqra University, Kingdom of Saudi Arabia

aalbalawi@su.edu.sa

Marran Aldossari
Department of Computer Science, Shaqra University, Kingdom of Saudi Arabia

maldossari@su.edu.sa

Abstract

By utilising the multi-tenancy characteristic, cloud computing promises to reduce

expenses through less spending on hardware, infrastructure, and software. Even with

all of its advantages, multi-tenancy poses hazards for cloud computing. Without

suitable cloud security solutions, security concerns might end up being the main

factor delaying adoption. Additionally, multi-tenancy enabled by virtualisation,

which is one of the key elements of a cloud, creates significant security

vulnerabilities and does not provide adequate isolation between various instances

running on the same physical system. The three strategies we suggest to secure

shared virtualised systems against microarchitectural attacks are presented in this re-

search as a comprehensive solution. This includes experiments for combining the

three approaches and assessing them in potential operational contexts. The

assessment techniques have used several host systems to assess the system

overhead, CPU usage, and protection accuracy. The studies we have conducted on

both Debian 10 and Ubuntu 18.04 LTS physical servers utilising the KVM

hypervisor demonstrate that our comprehensive protection can identify attacks with

about 97% accuracy, and depending on how many mechanisms were used in the

https://doi.org/10.59992/IJCI.2024.v3n5p2
mailto:aalbalawi@su.edu.sa

50

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

various experimental scenario settings, the proportion of CPU consumption has

varied significantly. The CPU usage rate in experiments with different scenarios has

ranged from 27% to 68%, while the average system load over 5 minutes has ranged

from 1.40 to 4.2. This shows our proposed mechanisms are subject to refinement

and enhancement, especially in cases that require a high processing load. Note that

if we had used servers with more computing power, the results would certainly have

been better.

Keywords: Cloud Computing, Flush+Reload, Flush+Flush, Microarchitectural

Attacks, Prime + Probe.

1. Introduction

Cloud computing technology substantially benefits businesses and organisations due

to its cost efficiency, scalability, and flexibility [1]. According to Gartner [2], cloud

computing is among the top ten most important and promising components of

technology [3]. Multi-tenancy technology is an essential feature of a cloud. Cloud

providers can maximise resource usage by dividing a shared virtualised

infrastructure across several users, lowering costs [1]. Automatic resource

allocation algorithms are used by cloud computing providers, establishing two or

more VMs associated with unique clients sharing the same physical machine’s

resources [4]. However, sometimes, a malicious user may share access to the cloud’s

resources using allocation algorithms or VM placement policies to co-locate their

VM with the target VM on the same physical server. In such a scenario, co-resident

attacks and microarchitectural attacks may be used to violate confidentiality [5].

Despite all the benefits of multi-tenancy, it also introduces new vulnerabilities to

cloud computing. Security concerns might become the main obstacle deterring

adoption due to the lack of suitable comprehensive security solutions developed for

the cloud [1], [6], [7], [8]. Even though there have been numerous methods

https://doi.org/10.59992/IJCI.2024.v3n5p2

51

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

proposed [9], [10], [11], [12], [13], [14], [15] to reduce the risks of this kind of attack,

these methods have certain limitations related to how a mechanism to detect or

protect the data operates, how many attacks can be detected using these mechanisms,

what actions will be taken after spotting potentially suspicious behaviour, the

accuracy of threat detection, and who is in control of detection and protection

operations. We also believe that everyone who uses shared virtualised environments

must secure data. It is therefore necessary to find integrated solutions that are

trustworthy, high in accuracy, and have acceptable performance in order to design

an environment with the fewest threats that could potentially compromise the

security and privacy of all users of shared virtualised environments.

We address these limitations of current mitigation solutions by introducing a diverse

and comprehensive detection and protection system that protects against cache side-

channel and microarchitectural attacks. Our mechanism works at the level of VMs

and host machines. The VM can provide self-protection by using the memory

deduplication feature to monitor malicious activities targeting shared cryptographic

libraries and programs, obfuscating the attack results. Also, the host protects the

shared virtualised system by relying on hybrid analysis processes, namely dynamic

analysis, to monitor suspicious activities by analysing hardware performance

counters. It also uses static analysis to extract executable files from RAM images of

the suspicious.

VM to be checked against implicit attack characteristics (opcodes) using reverse

engineering tools. Then, the threat level of the VM is determined using a Softmax

classification algorithm. The proposed mechanism periodically scans the disk images

of VMs to ensure their integrity in terms of the presence of executable files that

contain implicit attributes of microarchitectural attacks. Our approach has diverse

lines of defence that are difficult for attackers to penetrate and bypass. It can also

work in a shared virtualised system with acceptable performance and high accuracy.

https://doi.org/10.59992/IJCI.2024.v3n5p2

52

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

The main contributions of our paper are as follows:

1) We present a holistic, integrated mechanism for protection against

microarchitectural attacks from within the victim VM and the local host.

2) We introduce the design and implementation of the protection method.

3) We evaluate the method in multiple scenarios in terms of attack detection

accuracy and performance characteristics.

The remainder of this paper is organised as follows. Section 2 provides the

background to the work. In Section 3, we explain and analyse the problem. Section

4 describes the proposed protection method. Section 5 provides an overview of our

experiments using the new methods. In Section 6, we discuss the evaluation of the

implemented methods. Section 7 compares our methods to related works. Finally,

Section 8 provides a brief conclusion and makes suggestions for future work.

2. Background

2.1 Microarchitectural Attacks:

This section reviews microarchitectural attacks that threaten shared virtualised

systems due to the nature and structure of those systems. Microarchitectural attacks

share certain properties, techniques, and attack environments.

2.1.1 Cache Side-channel Attack:

These attacks target the shared cache memory between users’ VMs in virtualised

systems, where the attacker analyses the timing information gained from retrieving

data from the shared cache and the main memory [16]. When the CPU requires data

to execute such instruction, the CPU can find the data in the cache or the main

memory. If the data is retrieved from the cache, the CPU cycles (CPU clocks) would

be low; however, if the data is not cached then it must be retrieved from the main

https://doi.org/10.59992/IJCI.2024.v3n5p2

53

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

memory, ensuring relatively larger CPU cycles are consumed to retrieve it. Then,

the required data will temporarily remain in the cache memory to improve the system

performance if the data is needed next time. Therefore, the attack technique

exploits the time difference between retrieving the data from the cache (Cache hit)

and the main memory (Cache miss) [17].

The attackers use timing information to launch attacks on the victim’s VM using

the cache hits and cache misses to measure the CPU cycles or the time to recover

the cache memory’s targeted addresses. In this attack, the attacker can break the

isolation between VMs, uncover the victim’s actions, obtain information about

cryptographic operations, and then break the encryption key, such as by using timing

information in the Table Lookup implementation of AES. In the following

explanation, we discuss three primary methods that can be used to leverage cache

memory and extract sensitive data.

• Prime + Probe: In this method, the attacker’s VM fills the cache lines with data.

The victim is then given time to carry out certain encryption processes. The

attacker’s VM then calculates the retrieval time for previously loaded data. The

attacker will then be able to identify the cache lines utilised in the victim’s

encryption operations as they will know what data has been deleted from the cache

memory. Neither shared libraries nor page deduplication are necessary for this

method.

• Flush + Reload: The attacker takes several steps to execute this type of attack,

taking advantage of shared resources and memory deduplication, as shown in

Figure 1. The attack is carried out with the following steps: (1) In the beginning,

the victim can use the shared program that contains a number of sensitive

operations and functions that are loaded into the shared cache by simply entering

one of them and executing one of the functions. (2) The attacker evicts these

https://doi.org/10.59992/IJCI.2024.v3n5p2

54

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

physical addresses from the cache memory by using the flush command (clflush)

to ensure that the addresses will be retrieved from the main memory if requested

next time, as a trap for the victim to find out the data retrieved and stored in the

cache memory, if the victim used one of these addresses. (3) The victim may use

one or more of the sensitive program’s functions, and as soon as the victim uses

one of them, it will be restored to the cache memory. That means that the victim

has actually fallen into the trap set by the attacker. (4) The attacker retrieves all

the addresses that have been flushed while keeping track of how long it takes to

retrieve each of these addresses using Time Stamp Counter (rdtsc). (5) The attacker

analyses the results. If the retrieval time for any of the physical addresses is longer

than the specified threshold, this means that none of them were used. However,

if the retrieval time for any of them was less than the threshold, this means that it

was used in the sensitive operations.

• Flush + Flush: In this method, the attacker’s VM first flushes the required memory

lines out of the cache. After that, it gives the victim a period to perform encryption

operations. Next, the attacker’s VM flushes the previous memory lines again and

measures the flush instructions’ execution time, by- passing direct cache accesses.

This technique relies on shared libraries and memory deduplication.

https://doi.org/10.59992/IJCI.2024.v3n5p2

55

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

Figure (1): Cache Side-Channel Attack

2.1.2 Spectre Attack:

The Specter Attack exploits an essential optimisation technique adopted by modern

CPUs called ’speculative execution’. Speculative execution occurs when a CPU

retrieves data that will likely be required later, rather than waiting until it requires

it. The attacker can observe the data from regions not allowed to be accessed in the

memory, which leads to revealing the victim’s process. To perform the attack, first

the attacker performs flush instructions to evict the desired cache lines and the

target branch instruction address. The attacker often affects the CPU branch

predictor using proper inputs for the conditional branch. After this, the attacker

inputs an invalid value for the conditional branch to cause an incorrect prediction,

thereby loading sensitive data into the shared cache. Finally, the attacker observes

and keeps track of the access times of the cache lines. If certain cache lines have

a short access time, the data is considered sensitive [18], [19].

2.1.3 Meltdown Attack:

Meltdown is a microarchitectural attack that abuses speculative execution features

in modern CPUs to leak data that is stored in kernel memory. Meltdown is similar

https://doi.org/10.59992/IJCI.2024.v3n5p2

56

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

to a spectre attack except that it does not rely on branch prediction and aims to

read the kernel memory from the userspace [18]. The attacker achieves a meltdown

attack in the following manner. First, the attacker runs a code to read a byte (secret

value) from privileged memory to implement a faulting instruction that will throw

an exception of a segmentation fault. Although it throws the segmentation fault

exception, the byte (secret value) is in the cache after the attacker multiplies the

byte, the cache page size, and uses it as an index into the allocated memory block.

After this, the attacker iterates through and observes the time taken to read, thus

revealing confidential data [20].

2.1.4 Rowhammer Attack:

The rowhammer attack approach exploits the electrical interaction of the DRAM

rows with each other, causing them to leak part of the charge when continuously

accessing adjacent rows. The attacker takes advantage of this point by repeatedly

accessing a DRAM row until it causes the bit to flip from one to zero or vice versa.

The attacker takes the following steps to carry out this attack. First, the attacker

selects a DRAM row next to the DRAM row to be flipped. After this, the attacker

repeatedly accesses the DRAM row to affect the adjacent rows, thus leaking their

charge. Finally, the attacker evicts the accessed DRAM out of the cache to guarantee

subsequent access to the DRAM row [21].

2.2 Microarchitectural Attacks Characteristics:

The implicit characteristics of microarchitectural attacks explain how these attacks

have been designed and how they work. Figure 2 shows the characteristics of

microarchitectural side-channel attacks (opcode). As described by Irazo- qui et al.

[22] [23], the code and programs of microarchitectural side-channel attacks contain

implicit characteristics and instructions that may distinguish them to some extent,

which leads to them being revealed when analysing the attacks’ codes. Table 1 shows

https://doi.org/10.59992/IJCI.2024.v3n5p2

57

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

a set of characteristics (opcodes) of microarchitectural attacks and their functions, as

well as the microarchitectural attacks that use them.

The attacker is likely to misuse unprivileged information and legal use instructions to

launch microarchitectural side- channel attacks. This information can help the attacker

to design and program attack scripts by utilising instructions that can evict the cache

memory, measure time for retrieving data precisely, lock the memory bus, and bypass

cache access, as shown in Figure 2. All these scripts are then compiled into

executable files within shared virtualised environments to perform attacks. However,

identifying these scripts is possible through disassembling the executable files of the

attack and recognising the interior implicit characteristics and instructions related to

how they have been built.

Microarchitectural attacks comprise certain characteristics that need to be

incorporated in their design. Below we review these characteristics, as discussed in

[22] and [23].

Table (1): Microarchitectural Attacks Characteristics

https://doi.org/10.59992/IJCI.2024.v3n5p2

58

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

• High-Resolution Timers: As shown in Figure 2 (lines 7 and 12), a set of

microarchitectural attacks rely on timing information for retrieving data from the

cache, the RAM, the last level of cache, and the first and second level cache

precisely. Hence, the use of an instruction is required, such as a Time Stamp

Counter (rdtsc), that records the timing information efficiently and has adequate

precision to distinguish between data retrieval times.

• Memory Barriers: As shown in Figure 2 (lines 5, 6, 8, and 11), memory barriers

include two types of instructions: mfence, and lfence. The attacker may use these

instructions to serialise all store and load activities before mfence and lfence

instructions in the program instruction stream. In other words, these instructions

can be used to suspend out-of-order execution and collect precise timing

information for retrieving data from the cache and RAM. mfence and lfence

instructions can also be included in an attack’s script [24], [25].

• Cache Evictions: As shown in Figure 2 (line 14), the attacker is able to exploit

eviction instructions toevict the required cache line out of the cache using the

Clflush instruction as a trap for the victim to retrieve data from the RAM, waiting

for a while until the victim retrieves this cache line. Therefore, the attacker realises

that the evicted and flushed cache line has been used by measuring the data retrieval

time. The desired cache line is removed from the entire cache memory (all cache

levels) using the Clflush instruction [26].

• Memory Access Lock: Attack scripts can also contain memory bus-locking

instructions to ensure that the processor has exclusive ownership of the shared

memory for the execution duration. The bus locking instruction consists of the

Lock prefix and the following instructions: Lock prefix and the following

instructions as ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, DEC, FADDL,

INC, NEG, NOT, OR, SBB, SUB, XADD, XOR. However, the XCHG in-

https://doi.org/10.59992/IJCI.2024.v3n5p2

59

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

struction does not require the Lock prefix [27].

• Non-temporal instructions allow the processor to not write data into the cache, thus

directly retrieving data from the memory when requested. These instructions

include monvnti and movntdq instructions [28], [29].

• CPU Affinity Assignment: Almost all microarchitectural attacks require CPU

affinity to achieve cores- idency on the same CPU core to share a specific cache

level with a target process. Therefore, the at- tack scripts may have function calls

that accomplish CPU affinities, such as sched setaffinity [23].

• Instruction Iteration: Practically, in microarchitectural attacks, the attacker needs

to repeat some of the instructions mentioned above to execute an attack

successfully. Hence, some of these instructions may be placed inside aLoop.

• Mmap () Function: Attackers use the mmap () function to load the target program

into memory as a Read Only file. Then the memory deduplication feature scans

and removes the replica files to be one copy shared between users; this is a

critical requirement for the Flush+Reload and Flush+Flush attacks.

Figure (2): Attack Characteristics snippet from [30]

https://doi.org/10.59992/IJCI.2024.v3n5p2

60

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

3. Problem Definition

Cloud computing relies on sharing computing resources over a network to reduce

the cost of infrastructure. One form of sharing involves using a shared pool of

applications and programs that may be sensitive, such as sharing cryptographic

libraries using memory deduplication, which is a memory-saving feature used to

optimise memory utilisation and allow an increase in the number of VMs on the

same host.

Despite the economic benefits of sharing computing resources, it is known to give

rise to security risks if the resources are shared with malicious users. In such a case,

the malicious users can exploit the shared resources on the same physical machine

as a covert channel to launch microarchitectural attacks. In some cases, such side-

channel attacks are known to be able to crack most encryption algorithms, leading to

confidentiality violations [5], [17], [30], [31], [32]. There are a number of

countermeasures [9], [10], [12], [13], [14], [23], [33], [34] designed to mitigate

microarchitectural attacks. Due to microarchitectural attacks relying on sharing

computing resources, such as cache levels and instructions, to obtain the time

difference of accessing data from cache and main memory, most existing defence

methods are proposed based on eliminating imbalance, partitioning caches, avoiding

colocation, or detecting malicious activities. However, they are also known to have

significant shortcomings. First, when applied to cloud computing, significant

changes are required to the computing infrastructure, which may hinder adoption by

cloud providers. Also, some of these methods may cause system performance

degradation and high overhead. They also have high false rates (either false positive

or negative) in terms of detecting malicious activities. In addition, they need more

diversity and comprehensiveness of protection against various types of

microarchitectural attacks. Moreover, they do not provide systematic procedures to

exclude a malicious VM after detection. Therefore, it is necessary to design a

https://doi.org/10.59992/IJCI.2024.v3n5p2

61

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

protection system that integrates diverse lines of defence with acceptable

performance and high accuracy, making penetration difficult and leading to

bypassing of attackers. While achieving all this, a protection system must maintain

the fundamental nature of shared virtualised systems and improve security controls

at the same time as enhancing performance attributes. It is also essential to conserve

the economic advantages of shared virtualised systems while reducing side-channel

attacks and microarchitectural attack threats, as well as providing mechanisms to

monitor VMs’ activities on the shared host. It is also necessary to design forensic

workstations compatible with shared virtualised systems to analyse executable files

of suspicious VMs and exclude any malicious VMs.

4. Methodology

The methodology used consists of a combination of three integrated methods that

operate in shared virtualised systems. The first method [35] monitors and protects

sensitive shared program functions (cryptographic libraries and shared executable

files) within a VM. It also uses the memory deduplication feature to acquire attack

readings and then analyses them using the logistic regression model. It can detect

suspicious activities that sensitive shared programs are exposed to during execution

of sensitive cryptographic operations in shared virtualised systems. Additionally, it

can obfuscate the results of attacks obtained by the attacker. The method supports

VMs to detect attacks by knowing the attacks’ readings, thus providing self-

protection for VMs.

Assume that two VMs run in a shared virtualised system supporting the memory

deduplication feature. One of the VMs is malicious and the other is a target or victim

VM. The two VMs share the last level of cache on the same host and also share

the same cryptographic libraries and executable files as a result of using memory

deduplication, which deletes all replicas of executable files and retains only one

https://doi.org/10.59992/IJCI.2024.v3n5p2

62

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

shared copy between them to save memory capacity. As shown in Figure 3, the VMs

can access the shared memory and perform a flush-based cache attack in the system.

The attacker conducts the flush-based attack (steps 1 and 6 in Figure 3).

• The attacker defines the desired memory addresses related to the shared executable

file’s target functions and flushes them out of the cache using the clflush instruction

(the attacker may need to repeat flushing of the exact addresses multiple times to

ensure the attack’s success). The flushed functions’ addresses are intended to be

retrieved from the main memory when the victim requests and executes these func-

tions.

• Next, the attacker waits for the victim to perform encryption operations or execute

sensitive data-related functions. Then the attacker reloads the flushed functions’

addresses and measures the access time (using the rdtsc instruction) to determine

whether or not the victim has requested and executed those functions.

The proposed protection mechanism includes the steps numbered 2, 3, 4 and 5 in

Figure 3).

• It obtains the shared functions’ addresses of executable files and cryptographic

libraries to be mon- itored and shielded from flush-based cache attacks.

• It recovers the monitored functions into the cache memory while measuring each

function’s recovery time over each specified period. As a result, the functions will

be reloaded and the detection mechanism will discover the flush instructions. The

measurement uses rdtsc instructions that provide a high- resolution time stamp

counter. It sets an iteration sample for the monitored functions to measure the

recovery time frequently. It is then measured against the system’s threshold to

detect whether flush in- structions have been conducted on the functions. As the

detection mechanism accesses the addresses specified continuously to be

monitored, the attack results are obfuscated, thus the attacker will record cache hits

https://doi.org/10.59992/IJCI.2024.v3n5p2

63

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

for all the addresses monitored, even if the victim does not use them.

• It records the number of flushes for each monitoring function and then analyses

them using logistical regression.

• It then warns the user in case of attack.

The second method [36] is a mechanism for detecting and protecting against

microarchitectural attacks inside the host. The technique is a dynamic and static

analysis hybrid, as shown in Figure 4. The dynamic analysis monitors VMs’ activities

in a virtualised system by obtaining readings from hardware performance counters

relevant to the shared cache at runtime. Then, the activities of the VMs are

classified as benign or suspicious after analysing the readings using a logistic

regression model. When any suspicious activity is detected, the static analysis runs.

The static analysis accesses the suspicious VM and extracts executable files from

a disk and RAM images. It then examines whether these files contain opcodes of

microarchitectural attacks. Based on the results, the threat level of these files is

determined using a neural network classification model.

The third method [44] is based on a combination of static analysis with the ClamAV

application. The method runs periodically and VMs are randomly selected for

testing. There are two types of scans: a microarchitectural attacks scan and an

antivirus scan, as shown in Figure 5. The mechanism accesses the VM, extracts

executable files, checks if they contain the implicit characteristics of a

microarchitectural attack, and then analyses the results using a logistic regression

model to detect whether there are any malicious files and whether they contain

viruses. The scan is divided into two parts based on duration: a fast scan and a

full scan. This method periodically scans a shared virtualised system to eliminate

attack files and viruses and identify the malicious VM. The methods operate in

tandem to provide adequate protection for a shared system.

https://doi.org/10.59992/IJCI.2024.v3n5p2

64

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

Figure (3): Flush-based Attacks Detection Method

Figure (4): The Dynamic and Static Analysis Protection Method

https://doi.org/10.59992/IJCI.2024.v3n5p2

65

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

Figure (5): The Periodically Cleansing Method

5. Experimental Setup

We created shared virtualised systems and executed experiments with the QEMU-

KVM hypervisor that runs KSM as a memory-saving deduplication feature. As hosts,

we used Ubuntu 18.04.5 LTS, which uses an Intel Core i5- 4200M CPU, and Debian

10, which uses an Intel Core i5-4200U CPU. We then created two VMs on the

same host. The VMs were running Ubuntu 18.04.5 LTS OS, with one VM as an

attacker and the other as a victim. We installed several essential tools inside the

VMs. For instance, the GDB (GNU Project debugger) tool facilitates finding the

functions’ addresses of shared executable files, thus enabling monitoring of

functions. We also installed AVML (acquire volatile memory for Linux) to capture

the RAM status regularly. Moreover, we installed the Linux Perf, the Libguestfs

Tool, the Linux Objdump Disassembler, Radare2, Volatility Tools, and ClamAV

https://doi.org/10.59992/IJCI.2024.v3n5p2

66

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

inside the host. We conducted the attacks using the Mastik Tool designed by

Yarom et al. [37]. We conducted experiments using this environment to evaluate the

system’s overall performance and record the system load and CPU overhead. The

mechanism integrates four mechanisms that may significantly impact a system.

Thus, we decided to conduct experiments and record the effect.

6. Experimental Results and Evaluation

The experiments were conducted to assess the load on the system and the overhead

of the CPU. Therefore, the experiments were performed with different scenarios, as

follows:

• Execution of an experiment on dynamic analysis mechanisms while we were

conducting microarchi- tectural attacks. Only mechanisms for monitoring the

activities of VMs were included in this experiment. The mechanism of the first

method was combined with the mechanism of dynamic analysis in the second

method, and the overhead of the processor was measured.

• Execution of an experiment on the mechanisms of static analysis. The static analysis

of microarchitec- tural attacks in the second method was combined with the static

analysis of microarchitectural attacks in the third method.

• Measuring the load on the system and the CPU’s overhead while operating all

mechanisms. The dynamic and static analyses were implemented together.

The load on the system and the overhead for the CPU were measured using the Linux

Top tool, where the system load rate was recorded every 5 minutes, as shown in Table

2. Also, the detection accuracy of the proposed mechanisms was averaged based on

the detection accuracy experiments of all three methods.

Based on the results shown in Figure 6, it was found that there is an increase in CPU

usage and system load. However, the reason for this may be either the limited

https://doi.org/10.59992/IJCI.2024.v3n5p2

67

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

computing power of the systems used, as we utilised an Intel Core i5 processor for

both hosts, or the complexity of the code. The results will be better if a server with

suitable computing capabilities is utilised in both cases. Moreover, the mechanism

relies on dynamic analysis to determine whether any suspicious behaviours require

static analysis to ensure the presence of attack files inside a suspicious VM. This

condition may reduce overhead and improve performance. Also, the static analysis

that is used to detect files of microarchitectural attacks scans VMs for long-term

periods, rationalising the reliance on static analysis despite its importance in

protecting a shared virtualised system.

Figure 7 represents the normal distribution of system load and processor usage. The

figure also shows the probability density of load and processor usage. Normal

distribution was calculated by calculating the mean and standard deviation, and then

the normal distribution was calculated using Microsoft Excel. We can also calculate

the normal distribution after calculating the mean µ and standard deviation σ using

the following equation:

https://doi.org/10.59992/IJCI.2024.v3n5p2

68

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

Table (2): System Overhead

7. Related Work

Various prior works have focused on detecting and preventing microarchitectural

attacks. This section reviews some of these previous studies. It clarifies numerous

problems and limitations related to the studies that motivated us to focus on these

limitations and consider them in our work. Irazoqui et al. [23] introduced MASCAT,

a technique for detecting microarchitectural attacks using static analysis of the

executable files associated with attacks. MASCAT detects microarchitectural attack

instructions (opcodes) hidden inside executable files. MASCAT is similar to an

antivirus appliance for scanning files, particularly before uploading and downloading

software to an app store. However, MASCAT has several areas for improvement that

may prevent it from being adopted as an appropriate solution for shared virtualised

https://doi.org/10.59992/IJCI.2024.v3n5p2

69

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

systems, such as a high rate of false positives. Additionally, it results in substantial

system overhead. Furthermore, it is limited to scanning executable files on a local

device. It is sometimes not used to monitor the VM’s disk and RAM in real-time to

detect and protect against attacks in shared virtualised systems.

Additionally, Zhang et al. [14] presented CloudRadar, a detection mechanism used

to significantly decrease cache- based side-channel attacks in cloud systems. It uses

a combination of a signature and anomaly-based detection method supported by a

hardware performance counter such as perf used in the Linux Kernel. CloudRadar

uses a database to store signatures for use in comparison to identify suspicious

behaviour. However, CloudRadar is unable to identify attacks that exhibit only minor

changes from existing attacks because CloudRadar depends on signature-based

https://doi.org/10.59992/IJCI.2024.v3n5p2

70

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

detection, so it can only specify a specific pattern of attack program behaviour. If

there is even a slight change in the attack program’s behaviour pattern, the attack

will be undetected, meaning that this method only detects attacks known with a

specific pattern.

Cho et al. [11] proposed a detection mechanism based on machine learning for

monitoring cache side-channel attacks’ activities, classifying these attacks according

to hardware performance counters’ results obtained in real-time. The approach relies

on the Intel Performance Counter Monitor (Intel PCM) to get readings from five

counters related to cache performance and provides an accurate detection rate.

However, it requires remarkable adjustments to the Intel PCM tool. Furthermore, the

method of Cho et al. assumes that the attacker’s VM must have privileged access mode

to the resources, making the mechanism capable of monitoring the attacker’s activities.

Also, Chiappetta et al. [10] proposed various detection approaches that detect Flush +

Reload attacks’ activities in real-time by relying on the hardware performance events

counter. Several of these approaches are based on machine learning algorithms.

Nevertheless, the approaches are restricted in terms of implementation, meaning the

approaches need to be expanded to cover more than one type of cache side-channel

attack other than Flush + Reload attacks.

One study [9] designed an attack detection based on the Gaussian anomaly detection

algorithm. The proposed approach employs Intel Cache Monitoring Technology (Intel

CMT) to obtain real-time hardware performance counter readings. This detecting

technique generates accurate findings in a limited number of circumstances but is

adversely influenced by background noise [13].

Another study [38] introduced a technique based on examining the opcodes of

executable files obtained from VMs, particularly the VMs’ RAM image, using VM

introspection tools. After that, it classifies the files using classification models to

https://doi.org/10.59992/IJCI.2024.v3n5p2

71

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

determine which files are benign and which are malicious. However, the technique is

unable to detect side- channel attacks.

Several studies [33], [34] have proposed mechanisms that add noise to distract the time

difference between the cache hit and the cache miss in shared systems, or they

eliminate fine-grained timers using fuzzy timers instead of high-resolution clocks to

deal with this risk. However, implementing these solutions is not attractive because it

requires modifications to the hypervisor. Also, they are not feasible for applications

that require fine-grained timing in- formation [39]. Additional solutions have been

proposed to reduce the probability of sharing the same resources between the victim

and the attacker by designing VM placement policies [40]. The fundamental concept

is to restrict the number of servers allowed for each account to use, hence reducing the

attacker’s exposure to target VMs. This policy increases the possibility of co-locating

VMs associated with the same user account, making it challenging to complete co-

residence with the target VM. However, this policy has apparent limitations related to

workload balance and power consumption [41]. Reducing the probability of sharing

the same resources can be achieved by dividing the cache into several zones and

assigning one for each VM, thus leading to partial isolation of VMs [42]. This approach

may effectively isolate caches between distinct processes performing sensitive

functions [43]. However, it limits the number of VMs that use a shared cache on the

same host, and it requires significant changes in the current cloud model to be adopted

effectively [41].

In brief, some of these methods need to be more com prehensive for an adequate

number of cache side-channel attacks. Some of them are less attractive because they

re- quire significant changes in the infrastructure of the shared virtualised system, and

several of them also need to develop their results because they produce a high number

of false- negative and false-positive results. Our work concentrates on protecting and

detecting sufficient numbers of significant microarchitectural attacks with accurate

https://doi.org/10.59992/IJCI.2024.v3n5p2

72

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

detection results and satisfactory system performance.

8. Conclusion

Cloud computing relies on sharing resources between users of the same physical

machine to reduce costs by optimising and increasing utilisation. However, sharing

these resources with malicious users may lead to confidentiality violations through

co-residency attacks. These attacks may exploit sharing resources, such as cache

memory, to reveal a legitimate user’s recent activities. Multiple techniques and

factors can successfully be exploited to perform side-channel and other

microarchitectural attacks. Therefore, there is still a risk despite all the benefits of

sharing resources on the same physical machine. If this security risk is not properly

and adequately mitigated, it could be the primary concern that obstructs cloud

adoption. This paper has introduced the use of the three approaches to protect shared

virtualised systems. These approaches provide self- protection for the VM on which

they are used by monitoring activities within shared virtualised systems, determining

the threat level of suspicious VMs, and providing periodic scanning of the virtualised

system against microarchitectural attacks and viruses.

We have proposed developing three methods to provide comprehensive and holistic

protection for shared virtualised systems against microarchitectural attacks. The first

method detects cache attacks using memory deduplication and a logistic regression

model. The second method detects and pro tects shared virtualised systems against

cache side-channel attacks by integrating a dynamic and static analysis and

identifying the threat level of a particular VM by using machine learning algorithms.

The final method periodically cleanses shared virtualised systems against

microarchitectural attacks and viruses by analysing implicit attributes of

executable files using a logistic regression algorithm comprised of ClamAV.

https://doi.org/10.59992/IJCI.2024.v3n5p2

73

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

9. Acknowledgements

We would like to extend our sincere gratitude to Shaqra University for their

unwavering support throughout the research and preparation of this publication. The

resources and academic environment provided by the university have played an

integral role in shaping the outcome of this work. We are thankful for the

opportunity to contribute to the scholarly community, and we recognize the

invaluable contribution of Shaqra University in making this endeavour possible.

References

[1] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges in cloud computing

environments,” IEEE Security & Privacy, vol. 8, no. 6, pp. 24–31, 2010.

[2] “Gartner identifies the top 10 strategic tech- nology trends for 2020.” [Online]. Avail-

able: https://www.gartner.com/en/newsroom/press-releases/

2019-10-21-gartner-identifies-the-top-10-strategic-technology-trends-for-2020

[3] K. Hashizume, D. G. Rosado, E. Ferna´ndez-Medina, and E. B. Fernandez, “An analysis of

security issues for cloud computing,” Journal of internet services and applications, vol. 4, no.

1, pp. 1– 13, 2013.

[4] H. Aljahdali, P. Townend, and J. Xu, “Enhancing multi-tenancy security in the cloud iaas model

over public deployment,” in 2013 IEEE Seventh International Symposium on Service-Oriented

System Engineering. IEEE, 2013, pp. 385–390.

[5] S. Saxena, G. Sanyal, S. Srivastava, and R. Amin, “Preventing from cross-vm side-channel

attack using new replacement method,” Wire- less Personal Communications, vol. 97, no. 3,

pp. 4827–4854, 2017.

[6] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu, “Multi-tenancy in cloud

computing,” in 2014 IEEE 8th International Symposium on Service Oriented System

Engineering. IEEE, 2014,

pp. 344–351.

https://doi.org/10.59992/IJCI.2024.v3n5p2
http://www.gartner.com/en/newsroom/press-releases/
http://www.gartner.com/en/newsroom/press-releases/

74

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

[7] A. Albalawi, V. Vassilakis, and R. Calinescu, “Side-channel attacks and countermeasures in

cloud services and infrastructures,” in NOMS 2022-2022 IEEE/IFIP Network Operations and

Management Sympo- sium. IEEE, 2022, pp. 1–4.

[8] A. Donevski, S. Ristov, and M. Gusev, “Security assessment of virtual machines in open source

clouds,” in 2013 36th International Conven- tion on Information and Communication

Technology, Electronics and Microelectronics (MIPRO). IEEE, 2013, pp. 1094–1099.

[9] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M. Menaud, “Cache-based side-

channel attacks detection through intel cache monitoring technology and hardware performance

counters,” in 3rd Int. Conf. on Fog and Mobile Edge Computing (FMEC), 2018, pp. 7–12.

[10] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-based side-channel

attacks using hardware performance coun- ters,” Applied Soft Computing, vol. 49, pp. 1162–

1174, 2016.

[11] J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-time detection for cache side

channel attack using performance counter monitor,” Applied Sciences, vol. 10, no. 3, p. 984,

2020.

[12] B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar, “For- tuneteller: Predicting

microarchitectural attacks via unsupervised deep learning,” arXiv preprint arXiv:1907.03651,

2019.

[13] M. Mushtaq, A. Akram, M. K. Bhatti, R. N. B. Rais, V. Lapotre, and

G. Gogniat, “Run-time detection of prime+ probe side-channel attack on aes encryption

algorithm,” in Global Information Infrastructure and Networking Symp. (GIIS), 2018, pp. 1–

5.

[14] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side- channel attack detection

system in clouds,” in Int. Symp. on Research in Attacks, Intrusions, and Defenses, 2016, pp.

118–140.

[15] H. Wang, H. Sayadi, S. Rafatirad, A. Sasan, and H. Homayoun, “Scarf: Detecting side-channel

attacks at real-time using low-level hardware features,” in IEEE 26th Int. Symp. on On-Line

Testing and Robust System Design (IOLTS), 2020, pp. 1–6.

https://doi.org/10.59992/IJCI.2024.v3n5p2

75

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

[16] S. Anwar, Z. Inayat, M. F. Zolkipli, J. M. Zain, A. Gani, N. B. Anuar, M. K. Khan, and V.

Chang, “Cross-vm cache-based side channel attacks and proposed prevention mechanisms: A

survey,” Journal of Network and Computer Applications, vol. 93, pp. 259–279, 2017.

[17] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! a fast, cross-vm attack

on aes,” in International Workshop on Recent Advances in Intrusion Detection. Springer, 2014,

pp. 299–319.

[18] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham- burg, M. Lipp, S.

Mangard, T. Prescher et al., “Spectre attacks: Ex- ploiting speculative execution,” in 2019 IEEE

Symposium on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[19] C. Tang, Z. Liu, C. Ma, J. Ge, and C. Tu, “Secflush: A hard- ware/software collaborative

design for real-time detection and defense against flush-based cache attacks,” in International

Conference on Information and Communications Security. Springer, 2019, pp. 251– 268.

[20] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,

J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel memory from

user space,” in 27th {USENIX} Security Symposium ({USENIX} Security 18), 2018, pp. 973–

990.

[21] S. Bhattacharya and D. Mukhopadhyay, “Curious case of rowhammer: flipping secret

exponent bits using timing analysis,” in International Conference on Cryptographic Hardware

and Embedded Systems. Springer, 2016, pp. 602–624.

[22] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Mascat: Stopping microar- chitectural attacks

before execution.” IACR Cryptol. ePrint Arch., vol. 2016, p. 1196, 2016.

[23] ——, “Mascat: preventing microarchitectural attacks before distribu- tion,” in Proceedings of

the Eighth ACM Conference on Data and Application Security and Privacy, 2018, pp. 377–

388.

[24] “MFENCE - memory fence.” [Online]. Available: https://www. felixcloutier.com/x86/mfence

[25] “LFENCE — load fence.” [Online]. Available: https://www. felixcloutier.com/x86/lfence

[26] “CLFLUSH — flush cache line.” [Online]. Available: https:

https://doi.org/10.59992/IJCI.2024.v3n5p2
http://www/
http://www/

76

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

//www.felixcloutier.com/x86/clflush

[27] “LOCK — assert lock signal prefix.” [Online]. Available: https:

//www.felixcloutier.com/x86/lock

[28] “MOVNTI — store doubleword using non-temporal hint.” [Online].

Available: https://www.felixcloutier.com/x86/movnti

[29] “MOVNTDQ — store packed integers using non-temporal hint.” [Online]. Available:

https://www.felixcloutier.com/x86/movntdq

[30] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise, l3 cache side-channel

attack,” in 23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014, pp. 719–

732.

[31] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a fast and stealthy cache

attack,” in Int. Conf. on Detection of Intrusions and Malware, and Vulnerability Assessment,

2016, pp. 279–299.

[32] D. Philippe-Jankovic and T. A. Zia, “Breaking vm isolation-an in- depth look into the cross

vm flush reload cache timing attack,” Int. J. of Computer Science and Network Security

(IJCSNS), vol. 17, no. 2,

p. 181, 2017.

[33] Y. Zhang and M. K. Reiter, “Du¨ppel: retrofitting commodity operating systems to mitigate

cache side channels in the cloud,” in Proceedings of the 2013 ACM SIGSAC conference on

Computer & communica- tions security. ACM, 2013, pp. 827–838.

[34] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating fine grained timers in xen,” in

Proceedings of the 3rd ACM workshop on Cloud computing security workshop. ACM, 2011,

pp. 41–46.

[35] A. Albalawi, V. Vassilakis, and R. Calinescu, “Memory deduplication as a protective factor

in virtualized systems,” in International Con- ference on Applied Cryptography and Network

Security. Springer, 2021, pp. 301–317.

[36] A. Albalawi, V. G. Vassilakis, and R. Calinescu, “Protecting shared virtualized environments

https://doi.org/10.59992/IJCI.2024.v3n5p2
http://www.felixcloutier.com/x86/clflush
http://www.felixcloutier.com/x86/lock
http://www.felixcloutier.com/x86/movnti
http://www.felixcloutier.com/x86/movntdq

77

International Journal of Computers and Informatics, London Vol (3), No (5), 2024

https://doi.org/10.59992/IJCI.2024.v3n5p2 E-ISSN 2976-9361

against cache side-channel attacks,” 2022.

[37] Y. Yarom, “Mastik: A micro-architectural side-channel toolkit,” https:

//cs.adelaide.edu.au/∼yval/Mastik/.

[38] X. Wang, J. Zhang, and A. Zhang, “Machine-learning-based malware detection for virtual

machine by analyzing opcode sequence,” in Inter- National Conference on Brain Inspired

Cognitive Systems. Springer, 2018, pp. 717–726.

[39] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel attacks

are practical,” in 2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 605–622.

[40] Y. Han, J. Chan, T. Alpcan, and C. Leckie, “Virtual machine alloca- tion policies against co-

resident attacks in cloud computing,” in 2014 IEEE International Conference on

Communications (ICC). IEEE, 2014, pp. 786–792.

[41] ——, “Using virtual machine allocation policies to defend against co-resident attacks in cloud

computing,” IEEE Transactions on De- pendable and Secure Computing, vol. 14, no. 1, pp.

95–108, 2015.

[42] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side- channel in multi-tenant

cloud using dynamic page coloring,” in 2011 IEEE/IFIP 41st International Conference on

Dependable Systems and Networks Workshops (DSN-W). IEEE, 2011, pp. 194–199.

[43] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the intel last-level cache.” IACR

Cryptology ePrint Archive, vol. 2015, p. 905, 2015.

[44] Albalawi, A., Vassilakis, V., & Calinescu, R. (2022, April). Side-channel attacks and

countermeasures in cloud services and infrastructures. In NOMS 2022-2022 IEEE/IFIP

Network Operations and Management Symposium (pp. 1-4). IEEE.

https://doi.org/10.59992/IJCI.2024.v3n5p2

