

56

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

Malware Detection for Android Systems using

Neural Networks

Reem A. Kh. A. Almeshal
Training team member at the Public Authority for Applied Education and Training

(PAAET) - Higher Institute for Administration Services, Kuwait
Ra.almeshal@paaet.edu.kw

Abstract

The proliferation of Android malware poses an ever-growing menace to billions of

mobile users worldwide. Detection systems are updated constantly to address these

threats. Nevertheless, a counteraction arises in the form of evasion attacks, where an

opponent modifies malicious samples in a way that causes them to be incorrectly

classified as benign. In this paper, the proposed method aimed to investigate the signs

of malware on Android devices, and to develop a malware detection model for

Android systems based on the Drebin and the MH-100K datasets. We used each of

the LSTM, MLP, and RNNs for reducing and detecting the threats and malware to

enhance security over the Android systems. Each algorithm works separately and calls

the sub-algorithms in the feature selection (PCA, and CFS). We used several scenarios

for testing the performance of each algorithm according to the number of attributes in

both datasets and the number of epochs for each algorithm. The experiment results

showed the preference of results for the MH-100K dataset compared to the Drebin

dataset. On the other hand, the results showed that the accuracy for the LSTM

algorithm reached (98.31%) and outperformed both the MLP and the RNN algorithms

for malware detection for both datasets.

Keywords: Malware Detection, Android Systems, Deep Learning Methods, Drebin

Dataset, MH-100K Dataset.

https://doi.org/10.59992/IJCI.2025.v4n3p2
mailto:Ra.almeshal@paaet.edu.kw

57

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

Introduction

Mobile malware can manifest in various guises [1], yet users may lack the knowledge

to discern its presence [2]. Malware poses a significant risk to enterprise endpoints,

and mobile administrators should possess knowledge on identifying and eliminating

this menace on Android devices [3].

Mobile devices pose a substantial risk to enterprises, and organizations should not

overlook their vulnerability to malicious attacks orchestrated by cybercriminals with

the intention of data theft [4]. Mobile malware encompasses various manifestations,

such as spyware [5], ransomware [6], and Trojan horses [7]. Additional strategies have

arisen, including smishing (SMS phishing) [8], which involves cybercriminals

sending a corrupted text message to a mobile device to deceive the user into installing

malicious software onto the device [6].

These kinds of malware can inflict substantial damage by pilfering sensitive corporate

and user data, disrupting operations, impairing hardware, or divulging confidential

information. To mitigate these hazards, organizations must comprehend the perils

associated with mobile malware and implement measures to safeguard their devices

[9], [10].

Mobile malware prevention measures encompass the implementation of robust

security protocols, including the enforcement of authentication and authorization

requirements [11]. Additionally, security and encryption policies can be enforced

through the utilization of mobile device management (MDM) systems [12].

Furthermore, mobile malware detection and antimalware tools can be employed to

enhance security. Furthermore, organizations must provide comprehensive training to

their users regarding the identification of potential threats and the appropriate actions

to be taken in the event of encountering suspicious activity. Organizations can

https://doi.org/10.59992/IJCI.2025.v4n3p2

58

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

safeguard themselves from the detrimental effects of malware on mobile devices by

implementing these proactive measures [13].

In this study, the proposed method aimed to investigate the signs of malware on

Android devices, and to develop a malware detection model for Android systems

using each of the Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP),

and Recurrent neural networks (RNNs) for reducing and detecting the threats and

malware to enhance security over the Android systems.

Problem Statement

The proliferation of Android malware poses an ever-growing danger to billions of

mobile users worldwide. Continuous updates are made to detection systems to

effectively address these threats. Nevertheless, a counteraction arises in the form of

evasion attacks [14], wherein an opponent modifies malicious samples in such a way

that these samples are incorrectly classified as benign.

The Android operating system does not pose an inherent security risk. Nevertheless,

Android devices are vulnerable to malware due to several factors. Android being Open

Source allows any developer to access the code and potentially create applications

with malicious intentions [15]. Furthermore, Android's substantial worldwide market

dominance renders it highly susceptible to potential security breaches.

An additional complexity of the Android ecosystem lies in the multitude of device

manufacturers and carriers, each of whom holds a crucial responsibility in delivering

software updates for their respective devices. This can lead to a fragmented ecosystem

of devices operating on obsolete or unpatched iterations of the Android operating

system [16].

Since 2012, the Android operating system has maintained its status as the most widely

used platform for smartphones and tablets. This surge in Android malware has been a

direct result of its increasing popularity in recent years. The complexity of Android

https://doi.org/10.59992/IJCI.2025.v4n3p2

59

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

malware obfuscation and evasion techniques has greatly advanced, rendering

numerous conventional malware detection methods outdated [17].

This study aimed to examine the indicators of malware on Android devices and create

a malware detection model for Android systems using Neural Networks. The objective

is to mitigate and identify threats and malware, thereby enhancing security on Android

systems.

Android Malware

When it comes to identifying malware on an Android device, there are multiple

indicators that users and IT professionals should carefully observe. Occasionally, a

performance issue, such as sluggishness, can be more than a mere annoyance and is

caused by a malware infection. Malicious software frequently operates surreptitiously

on a device, covertly utilizing data without the user's knowledge [18]. If an Android

phone experiences a sudden surge in data usage or an abnormal depletion of its battery,

it may have been infected with malware [19].

Malicious applications frequently establish themselves on mobile devices

unbeknownst to users [20]. If users detect any newly installed applications on their

mobile devices that they did not personally download, these applications may contain

malicious code. An illustrative instance involves the surge of counterfeit ChatGPT

applications inundating app stores, masquerading as Trojan horses, thereby infiltrating

devices with malware and potentially pilfering files, text messages, call records, and

other data [21].

Adware is a software application designed to exhibit undesirable advertisements on a

device, usually in the form of intrusive pop-up windows or banners [22]. This not only

annoys and decreases the efficiency of end users, but also depletes device resources,

resulting in slowdowns. Furthermore, these pop-up advertisements can illicitly

acquire personal information. If end users begin to encounter advertisements for

https://doi.org/10.59992/IJCI.2025.v4n3p2

60

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

products and services unrelated to their search history, or encounter unfamiliar

prompts requesting personal information, their device may have been infected with

malware [23].

If a device experiences a sudden decrease in performance, it may be indicative of a

malware infection. Certain forms of mobile malware are specifically engineered to

execute actions that deplete device resources, such as CPU and memory, resulting in

device slowdown and, in certain instances, rendering it unresponsive [24]. By being

cognizant of these indicators, users can promptly and precisely detect malware on

their Android devices. If any of these indicators are detected, it is imperative to

promptly address the issue by eliminating the malicious software and fortifying the

device against potential future risks.

Related Works

Using a recently released dataset known as CICMalDroid2017, which is maintained

by the Cyber Security Institute of Canada, the authors of the study [6] employed an

ANN-based system for detecting Android malware. The results of the experiments

demonstrated that by dividing an IP address into four numbers, a high level of

accuracy (98.1%) can be achieved. The authors of the [17] study introduced DL-

Droid, a deep learning system designed to identify malicious Android applications by

employing dynamic analysis with dynamic input generation. A total of more than

(30,000) applications, including both benign and malware, were tested on real devices.

The experimental results demonstrated that the DL-Droid is capable of achieving a

detection rate of up to (97.8%).

Using static analysis, the authors of the study [25] proposed Android malware

detection using DT, SVM, K-Nearest Neighbor (KNN), and naive Bayes (NB). They

recommended and checked for malicious nodes using over (10,000) Android

applications. The results showed that the KNN demonstrated the best prediction rate

https://doi.org/10.59992/IJCI.2025.v4n3p2

61

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

at (93%) for malware. In contrast, MaMaDroid, an Android malware detection system

that examines the application's control flow graph, was suggested by the authors of

the study [26]. Adaboost, Decision Tree, and 5-NN are among the ML models they've

adopted and used. The findings demonstrated a detection rate of over (90%) against

all assaults.

The authors of the study [27] suggested GUIDED RETRAINING, a technique based

on supervised representation learning, to improve malware detector performance by

dividing samples into "easy" and "difficult" categories. There is a high rate of mistakes

in the classifier's predictions when dealing with challenging samples because the

probabilities are low. Next, we used the GUIDED RETRAINING method to enhance

the classification of the challenging samples. Since the error rate on the "easy"

samples is low by design, the base malware detector is used to make the final

predictions for that subset. They show that GUIDED RETRAINING can decrease

malware detector prediction errors by up to (40.41) percent, and they validate their

method on four Android malware detection approaches using more than (265,000)

malicious and benign apps.

In [28], the authors proposed DeepAMD to defend against real-world Android

malware using deep ANN. The DeepAMD outperformed other methods in detecting

and identifying malware attacks on both Static and Dynamic layers, with (93.4%)

accuracy for malware classification, (92.5%) for malware category classification, and

(90%) for malware family classification. DeepAMD has the highest malware category

and family classification accuracy on the Dynamic layer at (80.3%) and (59%),

respectively.

https://doi.org/10.59992/IJCI.2025.v4n3p2

62

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

Proposed Method

For the Malware Detection, we used three neural networks, LSTM, MLP, and RNN

for reducing and detecting the threats and malware to enhance security over the

Android systems using each of the Drebin and the MH-100K datasets. Figure 1 shows

the general framework for the proposed method:

Fig. (1): General framework

A. Dataset:

In this study, we used two datasets to test the performance of the proposed method.

The first dataset is the Drebin dataset [18], which contains feature vectors with (215),

attributes extracted from a total of (15,036) applications. This includes (5,560)

malware apps from the Drebin project and (9,476) benign apps.

https://doi.org/10.59992/IJCI.2025.v4n3p2

63

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

The second dataset is the MH-100K dataset [3], which is a comprehensive compilation

of Android malware data, consisting of (101,975) samples. The main CSV file

contains important metadata, such as the SHA256 hash (APK's signature), file name,

package name, Android's official compilation API, (166) permissions, (24,417) API

calls, and (250) intents. Table 1 presents a description of the MH100K metadata data

is provided:

The cryptographic hash "SHA256" is represented as a hexadecimal string. The term

"NAME" pertains to the designation of the application. The term "PACKAGE" serves

as a unique identifier for each application. The "TARGET_API" represents the API

level that the application has been tested against, while the "MIN_API" specifies the

minimum Android API level that is necessary for the program to work.

TABLE (I): List of metadata attributes and descriptions

Feature Name Data Type Attributes

SHA256 String SHA256 cryptographic hash

NAME String Package Name

PACKAGE String Unique Application ID

MIN_API Numeric Minimum API Level Required to Run

TARGET_API Numeric API Level That the Application Targets

B. Data Pre-processing:

Dataset pre-processing involved the utilization of the Minimum Redundancy

Maximum Relevance (MRMR) Algorithm. This algorithm was employed to identify

an optimal set of features that are both mutually and maximally dissimilar, thereby

effectively representing the response variable. The MRMR can process multivariate

temporal data without the need for prior data flattening.

C. Feature Selection and Neural Networks:

The proposed method used three different neural networks (LSTM, MLP, and RNN).

Each algorithm works separately and calls the sub-algorithms in the feature selection

(Principal Component Analysis (PCA), and the Correlation Based Feature Selection

https://doi.org/10.59992/IJCI.2025.v4n3p2

64

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

(CFS)). The CFS aims to create new subsets of features highly that contain a high

correlated features with a specific class (Malware, Not Malware), and uncorrelated

to each other (attributes) from both datasets. The PCA in the proposed method was

used to identify all uncorrelated features from both datasets.

The Multilayer Perceptron (MLP) is a type of neural network that is fully connected

and consists of multiple layers [29]. The MLP algorithm is an extension and subclass

of the feed-forward neural network [30]. The structure comprises three distinct layers:

the input layer, the output layer, and the hidden layer. The input layer operates by

receiving the input signal that is intended for processing. The output layer is tasked

with performing crucial functions, such as making predictions and carrying out

classifications [31]. The Multilayer Perceptron (MLP) utilizes hidden layers, located

between the input and output layers, as its main computational mechanism. In a

multilayer perceptron (MLP), the data exhibits a comparable pattern to a feed-forward

network, wherein it propagates in a unidirectional manner from the input layer to the

output layer. The neurons in the Multilayer Perceptron (MLP) are trained using the

backpropagation learning algorithm. Multi-layer perceptrons (MLPs) can accurately

approximate any continuous function and effectively solve problems that cannot be

solved using linear methods [32]. The main uses of Multilayer Perceptron (MLP) are

pattern classification, recognition, prediction, and approximation.

The recurrent neural network (RNN) possesses the capability to execute a consistent

operation for every element in a sequence, where the output is impacted by prior

computations. Recurrent Neural Networks (RNNs) are characterized by the presence

of bidirectional information flow. The input for the next time step is obtained from

the output of the Recurrent Neural Network (RNN) and is subsequently reused. A

feedforward neural network consists of an input layer, one or more hidden layers, and

an output layer. The output of a network node is generated by applying a weight matrix

to its inputs and then applying an activation function to the resulting values. A

https://doi.org/10.59992/IJCI.2025.v4n3p2

65

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

backpropagation algorithm is used to train the network. The process entails computing

the gradients for each weight in the neural network and subsequently adjusting each

weight to attain the desired output of the network. Recurrent Neural Networks (RNNs)

have backward connections, where the output of a specific layer is sent back to the

same layer or a previous layer within the network. Recurrent Neural Networks

(RNNs) utilize values calculated in a previous time step to impact calculations in the

current time step, thereby maintaining an internal state. This state serves as a type of

temporary memory within the network. Recurrent Neural Networks (RNNs) are

commonly employed as a computational framework for examining time series and

sequential data [33].

LSTM is a distinct variant of recurrent neural network (RNN). In the context of

recurrent neural networks (RNNs), the output produced by the RNN in the previous

time step is employed as the input for the current time step. The model being referred

to is the Long Short-Term Memory (LSTM) model. As the gap length increases, the

efficiency of the Recurrent Neural Network (RNN) decreases. The LSTM model has

an inherent ability to efficiently retain information for long periods. This technology

is utilized to examine, predict, and classify data that is arranged in chronological order

[34].

D. Experiments:

The experiments in the proposed method depend on the two main scenarios, where

the first scenario depends on a number of the attributes in both datasets (Drebin, and

the MH-100K), while the second scenario depends on the number of epochs (5, 10,

20, 25, 30, 35, 40, 45, and 50) for each algorithm (LSTM, MLP, and RNN). Each

scenario worked on each of the datasets (Drebin, and the MH-100K) as shown in

Table 2.

https://doi.org/10.59992/IJCI.2025.v4n3p2

66

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

TABLE (2): Experiments scenarios

Method Dataset Attributes Epochs

LSTM Drebin 100 5, 10, 20

150 25, 30, 35

215 40, 45, 50

MH-100K 100 5, 10, 20

150 25, 30, 35

250 40, 45, 50

MLP Drebin 100 5, 10, 20

150 25, 30, 35

215 40, 45, 50

MH-100K 100 5, 10, 20

150 25, 30, 35

250 40, 45, 50

RNN Drebin 100 5, 10, 20

150 25, 30, 35

215 40, 45, 50

MH-100K 100 5, 10, 20

150 25, 30, 35

250 40, 45, 50

For the results evaluation, we used the confusion matrix for each scenario. The

confusion matrix was utilized to assess the accuracy of the classifiers, and the F1-

Score was evaluated. Accuracy was measured using either Precision or Recall, while

F1-Score was specifically used for imbalanced data. Below are the formulas for the

performance evaluation metrics used.

Accuracy =
TP + TN

TP + TN + FP + FN
 (1)

Precision =
TP

TP + FP
 (2)

Recall =
TP

TP + FN
 (3)

https://doi.org/10.59992/IJCI.2025.v4n3p2

67

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

F Score = 2 ∗
Precision ∗ Recall

Precision + Recall
 (4)

Where the TP: Predicted Positive, Actual Positive; TN: Predicted Negative, Actual

Negative; FP: Predicted Positive, Actual Negative; and FN: Predicted Negative,

Actual Positive.

Results and Discussion

According to the experiment scenarios, this section presents the results for the

proposed algorithms (MLP, RNN, and LSTM) for Malware Detection using each of

the Drebin and the MH-100K datasets.

A. MLP RESULTS:

Table 3, and Table 4 show the Recall, Precision, and F-Measure results for the MLP

algorithm based on the number of features (100, 150, and 215), and using each of the

Drebin and the MH-100K datasets respectively:

TABLE (3): MLP ALGORITHM RESULTS WITH THE DREBIN DATASET

Method Dataset Attributes Recall Precision F1
MLP Drebin 100 0.9520 0.9406 0.9462
MLP Drebin 150 0.9558 0.9401 0.9479
MLP Drebin All 0.9545 0.9487 0.9516

TABLE (4): MLP algorithm results with the MH-100K dataset

Method Dataset Attributes Recall Precision F1
MLP MH-100K 100 0.9647 0.9716 0.9682
MLP MH-100K 150 0.9643 0.9738 0.9690
MLP MH-100K All 0.9697 0.9732 0.9715

Rate of F-Measure for each of the Drebin and the MH-100K datasets, where the F-

Measure with the Drebin dataset reached (94.62%) using (100) attributes, and reached

(96.82%) with the MH-100K dataset using the same number of attributes. While the

F-Measure with the Drebin dataset reached (94.79%) using (150) attributes, and

reached (96.9%) with the MH-100K dataset using the same number of attributes.

https://doi.org/10.59992/IJCI.2025.v4n3p2

68

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

Finally, the F-Measure with the Drebin dataset reached (95.16%) using (ALL)

attributes, and reached (97.15%) with the MH-100K dataset using the same number

of attributes.

We can notice also the preferences of the MH-100K dataset compared to the Drebin

dataset for detecting the malware. Figure 2 shows the overall accuracy of the MLP

algorithm for detecting the malware in both datasets:

Fig. (2): MLP Accuracy

Finally, we can notice the performance of the MLP algorithm for detecting the

malware increased with the increase of the attribute numbers in both datasets, where

the accuracy reached (96%) (96.11%) (96.4%) using the (100, 150, and ALL) of

attributes respectively.

B. RNN Results:

Table 5, and Table 6 show the Recall, Precision, and F-Measure results for the RNN

algorithm based on the number of features (100, 150, and 215), and using each of the

Drebin and the MH-100K datasets respectively:

TABLE (5): RNN Algorithm Results with the Drebin Dataset

Method Dataset Attributes Recall Precision F1

RNN Drebin 100 0.9571 0.9792 0.9680

RNN Drebin 150 0.9586 0.9818 0.9701

RNN Drebin All 0.9648 0.9848 0.9747

https://doi.org/10.59992/IJCI.2025.v4n3p2

69

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

TABLE (6): RNN algorithm results with the MH-100K dataset

Method Dataset Attributes Recall Precision F1

RNN MH-100K 100 0.9881 0.9752 0.9816

RNN MH-100K 150 0.9896 0.9761 0.9828

RNN MH-100K All 0.9913 0.9796 0.9854

According to the RNN results, we can notice the increasing rate of F-Measure for each

of the Drebin and the MH-100K datasets, where the F-Measure with the Drebin

dataset reached (96.8%) using (100) attributes, and reached (98.16%) with the MH-

100K dataset using the same number of attributes. While the F-Measure with the

Drebin dataset reached (97.01%) using (150) attributes, and reached (98.28%) with

the MH-100K dataset using the same number of attributes. Finally, the F-Measure

with the Drebin dataset reached (97.47%) using (ALL) attributes, and reached

(98.54%) with the MH-100K dataset using the same number of attributes.

We can notice also the preferences of the MH-100K dataset compared to the Drebin

dataset for detecting the malware. Figure 3 shows the overall accuracy of the RNN

algorithm for detecting the malware in both datasets:

Fig. (3): RNN Accuracy

We can notice the performance of the RNN algorithm for detecting the malware

increased with the increase of the attribute numbers in both datasets, where the

https://doi.org/10.59992/IJCI.2025.v4n3p2

70

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

accuracy reached (97.66%) (97.81%) and (98.14%) using the (100, 150, and ALL) of

attributes respectively.

C. LSTM Results:

Table 7, and Table 8 show the Recall, Precision, and F-Measure results for the LSTM

algorithm based on the number of features (100, 150, and 215), and using each of the

Drebin and the MH-100K datasets respectively:

TABLE (7): LSTM algorithm results with the Drebin dataset

Method Dataset Attributes Recall Precision F1

LSTM Drebin 100 0.9573 0.9808 0.9689

LSTM Drebin 150 0.9651 0.9830 0.9739

LSTM Drebin All 0.9669 0.9874 0.9770

TABLE (8): LSTM algorithm results with the Drebin dataset

Method Dataset Attributes Recall Precision F1

LSTM MH-100K 100 0.9890 0.9753 0.9821

LSTM MH-100K 150 0.9902 0.9797 0.9849

LSTM MH-100K All 0.9928 0.9808 0.9867

According to the LSTM results, we can notice the increasing rate of F-Measure for

each of the Drebin and the MH-100K datasets, where the F-Measure with the Drebin

dataset reached (96.89%) using (100) attributes, and reached (98.21%) with the MH-

100K dataset using the same number of attributes. While the F-Measure with the

Drebin dataset reached (97.39%) using (150) attributes, and reached (98.49%) with

the MH-100K dataset using the same number of attributes. Finally, the F-Measure

with the Drebin dataset reached (97.7%) using (ALL) attributes, and reached (98.67%)

with the MH-100K dataset using the same number of attributes.

By similarity with the MLP and the RNN results, we can notice also the preferences

of the MH-100K dataset compared to the Drebin dataset for detecting the malware.

Figure 4 shows the overall accuracy of the LSTM algorithm for detecting the malware

in both datasets:

https://doi.org/10.59992/IJCI.2025.v4n3p2

71

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

Fig. (4): LSTM Accuracy

Finally, we can notice the performance of the LSTM algorithm for detecting the

malware increased with the increase of the attribute numbers in both datasets, where

the accuracy reached (97.72%) (98.09%) (98.31%) using the (100, 150, and ALL) of

attributes respectively.

Conclusion

This study aimed to investigate the signs of malware on Android devices and to

develop a malware detection model for Android systems based on the Drebin and the

MH-100K datasets. We used each of the Long Short-Term Memory (LSTM),

Multilayer Perceptron (MLP), and Recurrent neural networks (RNNs) for reducing

and detecting the threats and malware to enhance security over the Android systems.

We used several scenarios for testing the performance of each algorithm.

The experiment results showed the preference of results for the MH-100K dataset

compared to the Drebin dataset. On the other hand, the results showed that the LSTM

algorithm outperforms both the MLP and the RNN algorithms for malware detection

for both datasets. For future work, we are looking to use more datasets with other

algorithms and investigate the most effective methods and datasets that increase

malware detection.

https://doi.org/10.59992/IJCI.2025.v4n3p2

72

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

References

1. B. Tahtaci and B. Canbay, “Android Malware Detection Using Machine Learning,” Proc. - 2020

Innov. Intell. Syst. Appl. Conf. ASYU 2020, 2020, doi: 10.1109/ASYU50717.2020.9259834.

2. H. Papadopoulos, N. Georgiou, C. Eliades, and A. Konstantinidis, “Android malware detection

with unbiased confidence guarantees,” Neurocomputing, vol. 280, pp. 3–12, 2018, doi:

10.1016/j.neucom.2017.08.072.

3. H. Bragança, V. Rocha, L. Barcellos, E. Souto, D. Kreutz, and E. Feitosa, “Android malware

detection with MH-100K: An innovative dataset for advanced research,” Data Br., vol. 51, 2023,

doi: 10.1016/j.dib.2023.109750.

4. M. Altaİy, İ. Yildiz, and B. Uçan, “MALWARE DETECTION USING DEEP LEARNING

ALGORITHMS,” vol. 7, no. 1, pp. 11–26, 2023.

5. A. Hota and P. Irolla, “Deep Neural Networks for Android Malware Detection,” Int. Conf. Inf.

Syst. Secure. Priv., no. Icissp, pp. 657–663, 2019, doi 10.5220/0007617606570663.

6. E. C. Bayazit, O. K. Sahingoz, and B. Dogan, “Neural Network Based Android Malware

Detection with Different IP Coding Methods,” HORA 2021 - 3rd Int. Congr. Human-Computer

Interact. Optim. Robot. Appl. Proc., no. November 2020, 2021, doi:

10.1109/HORA52670.2021.9461302.

7. H. Rathore, S. K. Sahay, P. Nikam, and M. Sewak, “Robust Android Malware Detection System

Against Adversarial Attacks Using Q-Learning,” Inf. Syst. Front., vol. 23, no. 4, pp. 867–882,

2021, doi: 10.1007/s10796-020-10083-8.

8. R. Kumar, W. Wang, J. Kumar, Zakria, T. Yang, and W. Ali, “Collective Intelligence:

Decentralized Learning for Android Malware Detection in IoT with Blockchain,” no. i, pp. 1–

15, 2021, [Online]. Available: http://arxiv.org/abs/2102.13376.

9. T. Sun, W. Pian, N. Daoudi, K. Allix, T. F. Bissyandé, and J. Klein, “LaFiCMIL: Rethinking

Large File Classification from the Perspective of Correlated Multiple Instance Learning,” no.

Mil, 2023, [Online]. Available: http://arxiv.org/abs/2308.01413.

10. H. Rathore, S. K. Sahay, S. Thukral, and M. Sewak, “Detection of Malicious Android

Applications: Classical Machine Learning vs. Deep Neural Network Integrated with

https://doi.org/10.59992/IJCI.2025.v4n3p2

73

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

Clustering,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 355, pp. 109–

128, 2021, doi: 10.1007/978-3-030-68737-3_7.

11. F. Taher, O. Al Fandi, M. Al Kfairy, H. Al Hamadi, and S. Alrabaee, “A Proposed Artificial

Intelligence Model for Android-Malware Detection,” Informatics, vol. 10, no. 3, 2023, doi:

10.3390/informatics10030067.

12. H. Rathore, S. K. Sahay, R. Rajvanshi, and M. Sewak, “Identification of Significant Permissions

for Efficient Android Malware Detection,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun.

Eng. LNICST, vol. 355, pp. 33–52, 2021, doi: 10.1007/978-3-030-68737-3_3.

13. A. Muzaffar, H. R. Hassen, H. Zantout, and M. A. Lones, “A Comprehensive Investigation of

Feature and Model Importance in Android Malware Detection,” pp. 1–18, 2023, [Online].

Available: http://arxiv.org/abs/2301.12778.

14. H. Bostani, Z. Zhao, Z. Liu, and V. Moonsamy, “Level Up with RealAEs: Leveraging Domain

Constraints in Feature Space to Strengthen Robustness of Android Malware Detection,” no. Ml,

2022, [Online]. Available: http://arxiv.org/abs/2205.15128.

15. W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “Graph Neural Network-

based Android Malware Classification with Jumping Knowledge,” 5th IEEE Conf. Dependable

Secur. Comput. DSC 2022 SECSOC 2022 Work. PASS4IoT 2022 Work. SICSA Int. Pap.

Compet. Cybersecurity, no. June 2022, doi: 10.1109/DSC54232.2022.9888878.

16. B. Molina-coronado, A. Ruggia, U. Mori, A. Merlo, A. Mendiburu, and J. Miguel-alonso,

“Light up that Droid ! On the Effectiveness of Static Analysis Features against App Obfuscation

for Android Malware Detection,” pp. 1–16.

17. M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based android malware

detection using real devices,” Comput. Secur., vol. 89, 2020, doi 10.1016/j.cose.2019.101663.

18. Daniel Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “DREBIN: Effective and

Explainable Detection of Android Malware in Your Pocket,” J. Jpn. Stud., vol. 36, no. 1, pp.

165–169, 2014, doi: 10.1353/jjs.0.0130.

19. M. S. Saleem, J. Mišić, and V. B. Mišić, “Android Malware Detection using Feature Ranking

of Permissions,” 2022, [Online]. Available: http://arxiv.org/abs/2201.08468.

https://doi.org/10.59992/IJCI.2025.v4n3p2

74

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

20. Z. Yang, F. Deng, and L. Han, “Flexible Android Malware Detection Model based on

Generative Adversarial Networks with Code Tensor,” Proc. - 2022 Int. Conf. Cyber-Enabled

Distrib. Comput. Knowl. Discov. CyberC 2022, pp. 19–28, 2022, doi:

10.1109/CyberC55534.2022.00015.

21. M. Al-Hawawreh, A. Aljuhani, and Y. Jararweh, “Chatgpt for cybersecurity: practical

applications, challenges, and future directions,” Cluster Comput., vol. 26, no. 6, pp. 3421–3436,

2023, doi: 10.1007/s10586-023-04124-5.

22. S. Suresh, F. Di Troia, K. Potika, and M. Stamp, “An analysis of Android adware,” J. Comput.

Virol. Hacking Tech., vol. 15, no. 3, pp. 147–160, 2019, doi: 10.1007/s11416-018-0328-8.

23. M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R. Damasevicius, and R. Maskeliunas,

Android Malware Detection: A Survey, vol. 942. Springer International Publishing, 2018.

24. M. A. Omer et al., “Efficiency of Malware Detection in Android System: A Survey,” Asian J.

Res. Comput. Sci., no. April, pp. 59–69, 2021, doi: 10.9734/ajrcos/2021/v7i430189.

25. H. Babbar, S. Rani, D. K. Sah, S. A. AlQahtani, and A. Kashif Bashir, “Detection of Android

Malware in the Internet of Things through the K-Nearest Neighbor Algorithm,” Sensors, vol.

23, no. 16, pp. 1–17, 2023, doi: 10.3390/s23167256.

26. H. Berger, C. Hajaj, E. Mariconti, and A. Dvir, “MaMaDroid2.0 -- The Holes of Control Flow

Graphs,” 2022, [Online]. Available: http://arxiv.org/abs/2202.13922.

27. N. Daoudi, K. Allix, T. F. Bissyandé, and J. Klein, “A two-steps approach to improve the

performance of Android malware detectors,” 2022, [Online]. Available:

http://arxiv.org/abs/2205.08265.

28. S. I. Imtiaz, S. ur Rehman, A. R. Javed, Z. Jalil, X. Liu, and W. S. Alnumay, “DeepAMD:

Detection and identification of Android malware using high-efficient Deep Artificial Neural

Network,” Futur. Gener. Comput. Syst., vol. 115, pp. 844–856, 2021, doi:

10.1016/j.future.2020.10.008.

29. Janke, J., Castelli, M., & Popovič, A. (2019). Analysis of the proficiency of fully connected

neural networks in the process of classifying digital images: Benchmark of different

classification algorithms on high-level image features from convolutional layers. Expert

Systems with Applications, 135, 12–38. https://doi.org/10.1016/j.eswa.2019.05.058.

https://doi.org/10.59992/IJCI.2025.v4n3p2

75

International Journal of Computers and Informatics, London Vol (4), No (3), 2025

https://doi.org/10.59992/IJCI.2025.v4n3p2 E-ISSN 2976-9361

30. Gumbarević, S., Milovanović, B., Gaši, M., & Bagarić, M. (2020). Application of Multilayer

Perceptron Method on Heat Flow Meter Results for Reducing the Measurement Time. 29.

https://doi.org/10.3390/ecsa-7-08272.

31. Al-Saif, A. M., Abdel-Sattar, M., Aboukarima, A. M., & Eshra, D. H. (2021). Application of a

multilayer perceptron artificial neural network for identification of peach cultivars based on

physical characteristics. PeerJ, 9, 1–22. https://doi.org/10.7717/peerj.11529.

32. Saha, S., Paul, G. C., Pradhan, B., Abdul Maulud, K. N., & Alamri, A. M. (2021). Integrating

multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability

assessment in Eastern India. Geomatics, Natural Hazards and Risk, 12(1), 29–62.

https://doi.org/10.1080/19475705.2020.1860139.

33. Ibrahim, M., & Elhafiz, R. (2023). Modeling an intrusion detection using recurrent neural

networks. Journal of Engineering Research, 11(1), 100013.

https://doi.org/10.1016/j.jer.2023.100013.

34. Rahman, S. M., Pawar, S., San, O., Rasheed, A., & Iliescu, T. (2019). Nonintrusive reduced

order modeling framework for quasigeostrophic turbulence. Physical Review E, 100(5).

https://doi.org/10.1103/PhysRevE.100.053306.

https://doi.org/10.59992/IJCI.2025.v4n3p2

