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Abstract 

The proliferation of Android malware poses an ever-growing menace to billions of 

mobile users worldwide. Detection systems are updated constantly to address these 

threats. Nevertheless, a counteraction arises in the form of evasion attacks, where an 

opponent modifies malicious samples in a way that causes them to be incorrectly 

classified as benign. In this paper, the proposed method aimed to investigate the signs 

of malware on Android devices, and to develop a malware detection model for 

Android systems based on the Drebin and the MH-100K datasets. We used each of 

the LSTM, MLP, and RNNs for reducing and detecting the threats and malware to 

enhance security over the Android systems. Each algorithm works separately and calls 

the sub-algorithms in the feature selection (PCA, and CFS). We used several scenarios 

for testing the performance of each algorithm according to the number of attributes in 

both datasets and the number of epochs for each algorithm. The experiment results 

showed the preference of results for the MH-100K dataset compared to the Drebin 

dataset. On the other hand, the results showed that the accuracy for the LSTM 

algorithm reached (98.31%) and outperformed both the MLP and the RNN algorithms 

for malware detection for both datasets. 

Keywords: Malware Detection, Android Systems, Deep Learning Methods, Drebin 

Dataset, MH-100K Dataset. 
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Introduction 

Mobile malware can manifest in various guises [1], yet users may lack the knowledge 

to discern its presence [2]. Malware poses a significant risk to enterprise endpoints, 

and mobile administrators should possess knowledge on identifying and eliminating 

this menace on Android devices [3]. 

Mobile devices pose a substantial risk to enterprises, and organizations should not 

overlook their vulnerability to malicious attacks orchestrated by cybercriminals with 

the intention of data theft [4]. Mobile malware encompasses various manifestations, 

such as spyware [5], ransomware [6], and Trojan horses [7]. Additional strategies have 

arisen, including smishing (SMS phishing) [8], which involves cybercriminals 

sending a corrupted text message to a mobile device to deceive the user into installing 

malicious software onto the device [6]. 

These kinds of malware can inflict substantial damage by pilfering sensitive corporate 

and user data, disrupting operations, impairing hardware, or divulging confidential 

information. To mitigate these hazards, organizations must comprehend the perils 

associated with mobile malware and implement measures to safeguard their devices 

[9], [10]. 

Mobile malware prevention measures encompass the implementation of robust 

security protocols, including the enforcement of authentication and authorization 

requirements [11]. Additionally, security and encryption policies can be enforced 

through the utilization of mobile device management (MDM) systems [12]. 

Furthermore, mobile malware detection and antimalware tools can be employed to 

enhance security. Furthermore, organizations must provide comprehensive training to 

their users regarding the identification of potential threats and the appropriate actions 

to be taken in the event of encountering suspicious activity. Organizations can 
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safeguard themselves from the detrimental effects of malware on mobile devices by 

implementing these proactive measures [13]. 

In this study, the proposed method aimed to investigate the signs of malware on 

Android devices, and to develop a malware detection model for Android systems 

using each of the Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), 

and Recurrent neural networks (RNNs) for reducing and detecting the threats and 

malware to enhance security over the Android systems. 

Problem Statement  

The proliferation of Android malware poses an ever-growing danger to billions of 

mobile users worldwide. Continuous updates are made to detection systems to 

effectively address these threats. Nevertheless, a counteraction arises in the form of 

evasion attacks [14], wherein an opponent modifies malicious samples in such a way 

that these samples are incorrectly classified as benign. 

The Android operating system does not pose an inherent security risk. Nevertheless, 

Android devices are vulnerable to malware due to several factors. Android being Open 

Source allows any developer to access the code and potentially create applications 

with malicious intentions [15]. Furthermore, Android's substantial worldwide market 

dominance renders it highly susceptible to potential security breaches. 

An additional complexity of the Android ecosystem lies in the multitude of device 

manufacturers and carriers, each of whom holds a crucial responsibility in delivering 

software updates for their respective devices. This can lead to a fragmented ecosystem 

of devices operating on obsolete or unpatched iterations of the Android operating 

system [16]. 

Since 2012, the Android operating system has maintained its status as the most widely 

used platform for smartphones and tablets. This surge in Android malware has been a 

direct result of its increasing popularity in recent years. The complexity of Android 
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malware obfuscation and evasion techniques has greatly advanced, rendering 

numerous conventional malware detection methods outdated [17]. 

This study aimed to examine the indicators of malware on Android devices and create 

a malware detection model for Android systems using Neural Networks. The objective 

is to mitigate and identify threats and malware, thereby enhancing security on Android 

systems. 

Android Malware 

When it comes to identifying malware on an Android device, there are multiple 

indicators that users and IT professionals should carefully observe. Occasionally, a 

performance issue, such as sluggishness, can be more than a mere annoyance and is 

caused by a malware infection. Malicious software frequently operates surreptitiously 

on a device, covertly utilizing data without the user's knowledge [18]. If an Android 

phone experiences a sudden surge in data usage or an abnormal depletion of its battery, 

it may have been infected with malware [19]. 

Malicious applications frequently establish themselves on mobile devices 

unbeknownst to users [20]. If users detect any newly installed applications on their 

mobile devices that they did not personally download, these applications may contain 

malicious code. An illustrative instance involves the surge of counterfeit ChatGPT 

applications inundating app stores, masquerading as Trojan horses, thereby infiltrating 

devices with malware and potentially pilfering files, text messages, call records, and 

other data [21]. 

Adware is a software application designed to exhibit undesirable advertisements on a 

device, usually in the form of intrusive pop-up windows or banners [22]. This not only 

annoys and decreases the efficiency of end users, but also depletes device resources, 

resulting in slowdowns. Furthermore, these pop-up advertisements can illicitly 

acquire personal information. If end users begin to encounter advertisements for 
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products and services unrelated to their search history, or encounter unfamiliar 

prompts requesting personal information, their device may have been infected with 

malware [23]. 

If a device experiences a sudden decrease in performance, it may be indicative of a 

malware infection. Certain forms of mobile malware are specifically engineered to 

execute actions that deplete device resources, such as CPU and memory, resulting in 

device slowdown and, in certain instances, rendering it unresponsive [24]. By being 

cognizant of these indicators, users can promptly and precisely detect malware   on 

their Android devices. If any of these indicators are detected, it is imperative to 

promptly address the issue by eliminating the malicious software and fortifying the 

device against potential future risks. 

Related Works 

Using a recently released dataset known as CICMalDroid2017, which is maintained 

by the Cyber Security Institute of Canada, the authors of the study [6] employed an 

ANN-based system for detecting Android malware. The results of the experiments 

demonstrated that by dividing an IP address into four numbers, a high level of 

accuracy (98.1%) can be achieved. The authors of the [17] study introduced DL-

Droid, a deep learning system designed to identify malicious Android applications by 

employing dynamic analysis with dynamic input generation. A total of more than 

(30,000) applications, including both benign and malware, were tested on real devices. 

The experimental results demonstrated that the DL-Droid is capable of achieving a 

detection rate of up to (97.8%). 

Using static analysis, the authors of the study [25] proposed Android malware 

detection using DT, SVM, K-Nearest Neighbor (KNN), and naive Bayes (NB). They 

recommended and checked for malicious nodes using over (10,000) Android 

applications. The results showed that the KNN demonstrated the best prediction rate 
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at (93%) for malware. In contrast, MaMaDroid, an Android malware detection system 

that examines the application's control flow graph, was suggested by the authors of 

the study [26]. Adaboost, Decision Tree, and 5-NN are among the ML models they've 

adopted and used. The findings demonstrated a detection rate of over (90%) against 

all assaults. 

The authors of the study [27] suggested GUIDED RETRAINING, a technique based 

on supervised representation learning, to improve malware detector performance by 

dividing samples into "easy" and "difficult" categories. There is a high rate of mistakes 

in the classifier's predictions when dealing with challenging samples because the 

probabilities are low. Next, we used the GUIDED RETRAINING method to enhance 

the classification of the challenging samples. Since the error rate on the "easy" 

samples is low by design, the base malware detector is used to make the final 

predictions for that subset. They show that GUIDED RETRAINING can decrease 

malware detector prediction errors by up to (40.41) percent, and they validate their 

method on four Android malware detection approaches using more than (265,000) 

malicious and benign apps. 

In [28], the authors proposed DeepAMD to defend against real-world Android 

malware using deep ANN. The DeepAMD outperformed other methods in detecting 

and identifying malware attacks on both Static and Dynamic layers, with (93.4%) 

accuracy for malware classification, (92.5%) for malware category classification, and 

(90%) for malware family classification. DeepAMD has the highest malware category 

and family classification accuracy on the Dynamic layer at (80.3%) and (59%), 

respectively. 
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Proposed Method 

For the Malware Detection, we used three neural networks, LSTM, MLP, and RNN 

for reducing and detecting the threats and malware to enhance security over the 

Android systems using each of the Drebin and the MH-100K datasets. Figure 1 shows 

the general framework for the proposed method: 

Fig. (1):  General framework 

A. Dataset:  

In this study, we used two datasets to test the performance of the proposed method. 

The first dataset is the Drebin dataset [18], which contains feature vectors with (215), 

attributes extracted from a total of (15,036) applications. This includes (5,560) 

malware apps from the Drebin project and (9,476) benign apps. 
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The second dataset is the MH-100K dataset [3], which is a comprehensive compilation 

of Android malware data, consisting of (101,975) samples. The main CSV file 

contains important metadata, such as the SHA256 hash (APK's signature), file name, 

package name, Android's official compilation API, (166) permissions, (24,417) API 

calls, and (250) intents. Table 1 presents a description of the MH100K metadata data 

is provided:  

The cryptographic hash "SHA256" is represented as a hexadecimal string. The term 

"NAME" pertains to the designation of the application. The term "PACKAGE" serves 

as a unique identifier for each application. The "TARGET_API" represents the API 

level that the application has been tested against, while the "MIN_API" specifies the 

minimum Android API level that is necessary for the program to work. 

TABLE (I): List of metadata attributes and descriptions 

Feature Name Data Type Attributes 

SHA256 String SHA256 cryptographic hash 

NAME String Package Name 

PACKAGE String Unique Application ID 

MIN_API Numeric Minimum API Level Required to Run 

TARGET_API Numeric API Level That the Application Targets 

B. Data Pre-processing:   

Dataset pre-processing involved the utilization of the Minimum Redundancy 

Maximum Relevance (MRMR) Algorithm. This algorithm was employed to identify 

an optimal set of features that are both mutually and maximally dissimilar, thereby 

effectively representing the response variable. The MRMR can process multivariate 

temporal data without the need for prior data flattening. 

C. Feature Selection and Neural Networks: 

The proposed method used three different neural networks (LSTM, MLP, and RNN). 

Each algorithm works separately and calls the sub-algorithms in the feature selection 

(Principal Component Analysis (PCA), and the Correlation Based Feature Selection 
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(CFS)). The CFS aims to create new subsets of features highly that contain a high 

correlated features with a specific class (Malware, Not Malware), and uncorrelated 

to each other (attributes) from both datasets. The PCA in the proposed method was 

used to identify all uncorrelated features from both datasets. 

The Multilayer Perceptron (MLP) is a type of neural network that is fully connected 

and consists of multiple layers [29]. The MLP algorithm is an extension and subclass 

of the feed-forward neural network [30]. The structure comprises three distinct layers: 

the input layer, the output layer, and the hidden layer. The input layer operates by 

receiving the input signal that is intended for processing.  The output layer is tasked 

with performing crucial functions, such as making predictions and carrying out 

classifications [31]. The Multilayer Perceptron (MLP) utilizes hidden layers, located 

between the input and output layers, as its main computational mechanism. In a 

multilayer perceptron (MLP), the data exhibits a comparable pattern to a feed-forward 

network, wherein it propagates in a unidirectional manner from the input layer to the 

output layer. The neurons in the Multilayer Perceptron (MLP) are trained using the 

backpropagation learning algorithm. Multi-layer perceptrons (MLPs) can accurately 

approximate any continuous function and effectively solve problems that cannot be 

solved using linear methods [32]. The main uses of Multilayer Perceptron (MLP) are 

pattern classification, recognition, prediction, and approximation. 

The recurrent neural network (RNN) possesses the capability to execute a consistent 

operation for every element in a sequence, where the output is impacted by prior 

computations. Recurrent Neural Networks (RNNs) are characterized by the presence 

of bidirectional information flow. The input for the next time step is obtained from 

the output of the Recurrent Neural Network (RNN) and is subsequently reused. A 

feedforward neural network consists of an input layer, one or more hidden layers, and 

an output layer. The output of a network node is generated by applying a weight matrix 

to its inputs and then applying an activation function to the resulting values. A 
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backpropagation algorithm is used to train the network. The process entails computing 

the gradients for each weight in the neural network and subsequently adjusting each 

weight to attain the desired output of the network. Recurrent Neural Networks (RNNs) 

have backward connections, where the output of a specific layer is sent back to the 

same layer or a previous layer within the network. Recurrent Neural Networks 

(RNNs) utilize values calculated in a previous time step to impact calculations in the 

current time step, thereby maintaining an internal state. This state serves as a type of 

temporary memory within the network. Recurrent Neural Networks (RNNs) are 

commonly employed as a computational framework for examining time series and 

sequential data [33]. 

LSTM is a distinct variant of recurrent neural network (RNN). In the context of 

recurrent neural networks (RNNs), the output produced by the RNN in the previous 

time step is employed as the input for the current time step. The model being referred 

to is the Long Short-Term Memory (LSTM) model. As the gap length increases, the 

efficiency of the Recurrent Neural Network (RNN) decreases. The LSTM model has 

an inherent ability to efficiently retain information for long periods. This technology 

is utilized to examine, predict, and classify data that is arranged in chronological order 

[34]. 

D. Experiments: 

The experiments in the proposed method depend on the two main scenarios, where 

the first scenario depends on a number of the attributes in both datasets (Drebin, and 

the MH-100K), while the second scenario depends on the number of epochs (5, 10, 

20, 25, 30, 35, 40, 45, and 50) for each algorithm (LSTM, MLP, and RNN). Each 

scenario worked on each of the datasets (Drebin, and the MH-100K) as shown in 

Table 2. 
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TABLE (2): Experiments scenarios 

Method Dataset Attributes Epochs 

LSTM Drebin 100 5, 10, 20 

150 25, 30, 35 

215 40, 45, 50 

MH-100K 100 5, 10, 20 

150 25, 30, 35 

250 40, 45, 50 

MLP Drebin 100 5, 10, 20 

150 25, 30, 35 

215 40, 45, 50 

MH-100K 100 5, 10, 20 

150 25, 30, 35 

250 40, 45, 50 

RNN Drebin 100 5, 10, 20 

150 25, 30, 35 

215 40, 45, 50 

MH-100K 100 5, 10, 20 

150 25, 30, 35 

250 40, 45, 50 

For the results evaluation, we used the confusion matrix for each scenario. The 

confusion matrix was utilized to assess the accuracy of the classifiers, and the F1-

Score was evaluated. Accuracy was measured using either Precision or Recall, while 

F1-Score was specifically used for imbalanced data. Below are the formulas for the 

performance evaluation metrics used. 

Accuracy =
TP +  TN

TP +  TN + FP + FN
                                  (1) 

Precision =
TP

TP + FP
                                                          (2) 

Recall =
TP

TP +  FN
                                                               (3) 
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F Score = 2 ∗
Precision  ∗  Recall

Precision +  Recall
                                   (4) 

Where the TP: Predicted Positive, Actual Positive; TN: Predicted Negative, Actual 

Negative; FP: Predicted Positive, Actual Negative; and FN: Predicted Negative, 

Actual Positive. 

Results and Discussion 

According to the experiment scenarios, this section presents the results for the 

proposed algorithms (MLP, RNN, and LSTM) for Malware Detection using each of 

the Drebin and the MH-100K datasets. 

A. MLP RESULTS: 

Table 3, and Table 4 show the Recall, Precision, and F-Measure results for the MLP 

algorithm based on the number of features (100, 150, and 215), and using each of the 

Drebin and the MH-100K datasets respectively: 

TABLE (3): MLP ALGORITHM RESULTS WITH THE DREBIN DATASET 

Method Dataset Attributes Recall Precision F1 
MLP Drebin 100 0.9520 0.9406 0.9462 
MLP Drebin 150 0.9558 0.9401 0.9479 
MLP Drebin All 0.9545 0.9487 0.9516 

 

TABLE (4): MLP algorithm results with the MH-100K dataset 

Method Dataset Attributes Recall Precision F1 
MLP MH-100K 100 0.9647 0.9716 0.9682 
MLP MH-100K 150 0.9643 0.9738 0.9690 
MLP MH-100K All 0.9697 0.9732 0.9715 

Rate of F-Measure for each of the Drebin and the MH-100K datasets, where the F-

Measure with the Drebin dataset reached (94.62%) using (100) attributes, and reached 

(96.82%) with the MH-100K dataset using the same number of attributes. While the 

F-Measure with the Drebin dataset reached (94.79%) using (150) attributes, and 

reached (96.9%) with the MH-100K dataset using the same number of attributes. 
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Finally, the F-Measure with the Drebin dataset reached (95.16%) using (ALL) 

attributes, and reached (97.15%) with the MH-100K dataset using the same number 

of attributes. 

We can notice also the preferences of the MH-100K dataset compared to the Drebin 

dataset for detecting the malware. Figure 2 shows the overall accuracy of the MLP 

algorithm for detecting the malware in both datasets: 

Fig. (2): MLP Accuracy 

Finally, we can notice the performance of the MLP algorithm for detecting the 

malware increased with the increase of the attribute numbers in both datasets, where 

the accuracy reached (96%) (96.11%) (96.4%) using the (100, 150, and ALL) of 

attributes respectively. 

B. RNN Results: 

Table 5, and Table 6 show the Recall, Precision, and F-Measure results for the RNN 

algorithm based on the number of features (100, 150, and 215), and using each of the 

Drebin and the MH-100K datasets respectively: 

TABLE (5): RNN Algorithm Results with the Drebin Dataset 

Method Dataset Attributes Recall Precision F1 

RNN Drebin 100 0.9571 0.9792 0.9680 

RNN Drebin 150 0.9586 0.9818 0.9701 

RNN Drebin All 0.9648 0.9848 0.9747 
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TABLE (6): RNN algorithm results with the MH-100K dataset  

Method Dataset Attributes Recall Precision F1 

RNN MH-100K 100 0.9881 0.9752 0.9816 

RNN MH-100K 150 0.9896 0.9761 0.9828 

RNN MH-100K All 0.9913 0.9796 0.9854 

According to the RNN results, we can notice the increasing rate of F-Measure for each 

of the Drebin and the MH-100K datasets, where the F-Measure with the Drebin 

dataset reached (96.8%) using (100) attributes, and reached (98.16%) with the MH-

100K dataset using the same number of attributes. While the F-Measure with the 

Drebin dataset reached (97.01%) using (150) attributes, and reached (98.28%) with 

the MH-100K dataset using the same number of attributes. Finally, the F-Measure 

with the Drebin dataset reached (97.47%) using (ALL) attributes, and reached 

(98.54%) with the MH-100K dataset using the same number of attributes. 

We can notice also the preferences of the MH-100K dataset compared to the Drebin 

dataset for detecting the malware. Figure 3 shows the overall accuracy of the RNN 

algorithm for detecting the malware in both datasets: 

Fig. (3): RNN Accuracy 

We can notice the performance of the RNN algorithm for detecting the malware 

increased with the increase of the attribute numbers in both datasets, where the 
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accuracy reached (97.66%) (97.81%) and (98.14%) using the (100, 150, and ALL) of 

attributes respectively. 

C. LSTM Results: 

Table 7, and Table 8 show the Recall, Precision, and F-Measure results for the LSTM 

algorithm based on the number of features (100, 150, and 215), and using each of the 

Drebin and the MH-100K datasets respectively: 

TABLE (7): LSTM algorithm results with the Drebin dataset 

Method Dataset Attributes Recall Precision F1 

LSTM Drebin 100 0.9573 0.9808 0.9689 

LSTM Drebin 150 0.9651 0.9830 0.9739 

LSTM Drebin All 0.9669 0.9874 0.9770 
 

TABLE (8): LSTM algorithm results with the Drebin dataset   

Method Dataset Attributes Recall Precision F1 

LSTM MH-100K 100 0.9890 0.9753 0.9821 

LSTM MH-100K 150 0.9902 0.9797 0.9849 

LSTM MH-100K All 0.9928 0.9808 0.9867 

According to the LSTM results, we can notice the increasing rate of F-Measure for 

each of the Drebin and the MH-100K datasets, where the F-Measure with the Drebin 

dataset reached (96.89%) using (100) attributes, and reached (98.21%) with the MH-

100K dataset using the same number of attributes. While the F-Measure with the 

Drebin dataset reached (97.39%) using (150) attributes, and reached (98.49%) with 

the MH-100K dataset using the same number of attributes. Finally, the F-Measure 

with the Drebin dataset reached (97.7%) using (ALL) attributes, and reached (98.67%) 

with the MH-100K dataset using the same number of attributes. 

By similarity with the MLP and the RNN results, we can notice also the preferences 

of the MH-100K dataset compared to the Drebin dataset for detecting the malware. 

Figure 4 shows the overall accuracy of the LSTM algorithm for detecting the malware 

in both datasets: 
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Fig. (4): LSTM Accuracy 

Finally, we can notice the performance of the LSTM algorithm for detecting the 

malware increased with the increase of the attribute numbers in both datasets, where 

the accuracy reached (97.72%) (98.09%) (98.31%) using the (100, 150, and ALL) of 

attributes respectively. 

Conclusion 

This study aimed to investigate the signs of malware on Android devices and to 

develop a malware detection model for Android systems based on the Drebin and the 

MH-100K datasets. We used each of the Long Short-Term Memory (LSTM), 

Multilayer Perceptron (MLP), and Recurrent neural networks (RNNs) for reducing 

and detecting the threats and malware to enhance security over the Android systems. 

We used several scenarios for testing the performance of each algorithm. 

The experiment results showed the preference of results for the MH-100K dataset 

compared to the Drebin dataset. On the other hand, the results showed that the LSTM 

algorithm outperforms both the MLP and the RNN algorithms for malware detection 

for both datasets. For future work, we are looking to use more datasets with other 

algorithms and investigate the most effective methods and datasets that increase 

malware detection.   
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