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Abstract 

The integration of artificial intelligence (AI) and swarm robotics has brought about 

significant advancements. Swarm robotics is based on decentralized control and self-

organization, taking inspiration from natural swarms. It involves employing a large 

number of uncomplicated robots to collaboratively complete intricate tasks. The 

algorithms underpinning swarm robotics, which is artificial intelligence, vary 

depending on the specific role of AI - such as error detection, navigation, 

coordination, and optimization - and according to the tasks that these robots aim to 

undertake. In this systematic review, we aim to explore algorithms based on artificial 

intelligence in swarm robots and the advantages of applying them in the real world. 

In this systematic review, 74 scientific papers published between the years 2020 to 

2024 were examined, but 53 of them were included after applying our methodology 

to them. The review investigated the common role of AI in swarm robotics, the most 

commonly used AI algorithms, and the percentage of the research that was conducted 

and tested in the real world. In conclusion, we discovered that there is a need for 

research that develops fault detection and coordination strategies, as well as a need 

for real-world testing. 

Keywords: AI Algorithms, AI in Swarm Robotics, AI Roles, Robotics Real-World 

Scenarios, Swarm Robotics. 
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1. Introduction 

Artificial intelligence is an advanced technology used by machines and computers 

that enables them to simulate the intelligence and capabilities of humans in solving 

problems and performing tasks. This technology is trained on a huge amount of 

information that makes it perform well. AI is currently widely used in many different 

technologies, for example, makes it easier and faster to implement routine and 

repeated tasks, especially if time is a crucial component of performance efficiency. 

Swarm intelligence is a novel form of AI that emerged in the middle of the 1980s 

and was modeled by the biological intelligence of living things, including swarms of 

locusts, ants, and bees [1]. Humans have been inspired to create robots with systems 

that function similarly to swarms of live things by seeing their collective behavior in 

swarms. These swarms are able to perform tasks that individuals are unable to 

complete because of their ability to coordinate and develop precise, complicated 

actions [2]. Swarm robots comprise a vast swarm of individual robots that collaborate 

to complete a specific task, such as defense, surveillance, or search and rescue, that 

may pose a risk to humans or take a long time. By sharing tasks and cooperating, 

swarm robots are able to solve problems more quickly and effectively than they could 

individually. Robots in a swarm are better and have a lot of advantages over 

individual ones. Further, compared to individual robots, swarm robots are more 

reliable, scalable, and dependable [3]. Swarm robots have many uses in various 

fields, and they are almost indispensable in some of them. Examples of their use 

include in medicine, such as surgeries, monitoring the health of patients, and treating 

cancer cells. In the environment, such as mining, geological surveys, and cleaning 

oil spills. In addition, agriculture foraging, harvesting, search and rescue, military 

activities, painting, and many others [3]. 
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Error detection, optimization, navigation, and coordination comprise the majority of 

the applications of artificial intelligence and their roles in swarm robots. 

We will concentrate on these roles in this research, and as these are the most 

prominent and recent AI roles, scientific research papers have been categorized 

according to them. Along with examining the benefits and impacts of their practical 

implementation, this study will introduce the various algorithms utilized in the four 

AI functions of swarm robots. 

The following research questions are presented in accordance with the previously 

stated objectives of this paper: 

RQ1: What are the uses of AI in swarm robotics?  

RQ2: What are AI algorithms used for swarm robotics? 

RQ3: What are the practical implications and advantages of employing real-world 

applications in the domain of swarm robotics? 

The methodology used in this systematic review included only research that matched 

the criteria that had been identified. After excluding research that did not meet the 

criteria, the number was 53 scientific research published between the years 2020 and 

2024. There are more details about our methodology that were mentioned in Section 

3. After analyzing scientific research, it was concluded that the majority of research 

is centered around studying optimization, one of the roles of artificial intelligence, 

and that there is a need to study coordination and especially error detection since it 

has the lowest percentage. In addition, there is a lot of research that used simulation 

for its results, while the percentage of research that was implemented in the real 

world was small. We also discovered that there are 5 algorithms of swarm robots 

used commonly in research, which are: Reinforcement Learning (RL), Particle 
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Swarm Optimization (PSO), Genetic Algorithms (GA), Artificial Neural Networks 

(ANNs), and Deep Reinforcement Learning (DRL). 

The remainder of the paper is structured as follows. Section 2, describes the 

methodology used in this review. Section 3, presents a summary of scientific research 

papers on swarm robots and classifying them according to the AI role. Section 4, 

displays the results of our research and answers the research questions. Section 5, 

concludes the work and proposes future research. 

2. Methodology 

This systematic review aims to explore AI-driven approaches in swarm robotics, 

specifically focusing on three research questions mentioned in the previous section. 

To ensure a comprehensive collection of relevant literature, a systematic search was 

conducted across multiple databases, including Google Scholar, ScienceDirect and 

IEEE. Search terms included “swarm robotics”, “robots swarm” and “AI in swarm 

robotics”. The search covered research articles published between 2020 and 2024 to 

capture the most recent advancements in the field. Studies were included if they were 

scientific research articles with full text provided and written in English language 

and details about the AI techniques used with a swarm or group of robots are 

included, Articles that provide examples of AI algorithms applied in swarm robotics 

or discuss their real-world applications. 

The three reviewers of this study examined up to 74 published research articles and 

filtered them exhaustively to meet the systematic literature review framework 

criteria. Studies were excluded when it is not related to artificial intelligence in 

swarm robotics, not in English, published before 2020, or didn’t include details about 

the used AI method or algorithms. The result after analyzing and filtering the 

collected studies was only 53 scientific research articles which are included in this 
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study. The review indicates four AI roles for swarm robotics which are: swarm 

navigation, swarm coordination, swarm optimization, and swarm fault detection. 

 

 
Fig. 1.  Count of published papers. 

3. Literature Review 

AI-driven approaches in swarm robotics have gained significant attention in recent 

years and have been leveraged in many applied areas of life. It leads to fast operation 

time and effective achievements. Here is a highlight of some recent research that 

explored various techniques and models for enhancing navigation, coordination, 

optimization, and fault detection in the field of robot swarms. 

3.1  Navigation 

[4] Provides a summary of recent work and an overview of the trend in the use of AI 

algorithms for path planning problems with unmanned aerial vehicles (UAVs) 

swarms. The AI techniques included in the review were categorized into four main 

groups: reinforcement learning techniques, evolutive computing techniques, swarm 

intelligence techniques, and graph neural networks. The review shows an increase in 

publications in recent years and a change in the predominance of the most widely 
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used techniques. The research emphasizes the importance of cooperative behavior 

and communication constraints in achieving superior performance in planning tasks 

for swarms of robots. 

Path planning for (UAVs) have has studied by many researchers, [5] discussed a path 

planning optimization problem that aims to maximize the amount of collected data 

while taking into account realistic constraints. In the implemented scenarios, 

multiple UAVs were involved and it operated independently without any 

communication or information-sharing. Additionally, the number of UAVs present 

in these non-cooperative situations may vary randomly. Double Deep Q-Network 

with Dueling Architecture (D3QN) algorithm was developed to learn the decision-

making policy for the typical UAV, without any prior knowledge of the environment. 

The algorithm is tested in experiment scenarios with different numbers and positions 

of IoT nodes and UAVs showing that the algorithm can navigate in real-time with a 

high success rate, high data collection rate, and low collision rate. 

Another research by [6] proposed an algorithm called Deep Learning Trained by 

Genetic Algorithm (DL-GA), which combines the advantages of deep learning and 

GA for multi-UAV path planning for faster optimization in challenging scenarios. 

The evaluation of DL-GA was based on the total distance of UAVs, the required 

number of UAVs, and solving time. (DL-GA) showed a much faster solving speed 

compared to the Genetic Algorithm (GA) alone. Also, it maintains a high 

optimization capacity, almost matching GA, and even outperformed GA under 

certain conditions. The research demonstrates the effectiveness of DL-GA through 

experiments, suggesting it is a promising approach for multi-UAV path planning. 

[7] introduces a new method for multi-UAV to plan paths together using deep 

reinforcement learning helping it map desired areas faster than before. Cooperative 

behavior and communication constraints are emphasized as important factors for 
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superior performance in planning tasks. the method was also tested in a real situation 

with computer-made data where a swarm of drones checked the temperature of the 

ground from the sky. The method works well even when the number of drones 

changes or they can't communicate much without the need for new training. 

[8] research presents a defense approach aimed at guarding a protected area against 

an attack by a swarm of adversarial agents in three-dimensional space. In the 

Methodology, the paper introduces a new method for 3D StringNet herding and 

extends previous 2D herding control laws. The results highlight the effectiveness of 

the proposed approach in quickly forming defenders and generating algorithms for 

determining the minimum number of defenders required for 3D formations. 

A framework for controlling robotic swarms through a combination of mean-field 

control, reinforcement learning, and collision avoidance algorithms was proposed by 

[9]. This approach exceeds standard multi-agent reinforcement learning and enables 

decentralized open-loop control. 

A protective mechanism based on the behavior of bees and clarifying its efficacy 

through a multi-agent model employing decision-making mechanisms was proposed 

by [10]. The results point out that the mechanism is effective in reaching an 

agreement and decreasing decision-making time. Notable strengths of the paper 

include its novelty, experimental verification, and clear methodology. 

Precise UAV system modeling is made possible by the ROS-NetSim framework 

presented by [11], which also makes cooperative simulation possible, which greatly 

improves performance and lowers positioning errors. The work shows significant 

progress in UAV-based synthetic apertures and highlights their potential uses by 

utilizing a co-design approach and adding an FTM range. 

When it comes to target-driven visual navigation tasks, the DIRL approach presented 

by [12] which combines Deep Reinforcement Learning with Imitation Learning—
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performs better than traditional deep reinforcement learning techniques. Simulation 

experiments in the AI2-THOR environment show that the strategy improves sample 

efficiency and navigation performance by utilizing both IL and DRL. The study, 

however, doesn't go into detail about how to use it in real-world situations. 

The study [13] examined how well off-road navigation for robots may be enhanced 

by using linguistic commands, landmarks, and preferred terrains. Through the use of 

a speech-to-text model and the incorporation of preferred terrains and adverbs into 

instructions, navigation performance was much enhanced and errors were reduced. 

The study lacked a thorough discussion of scalability and practicality, despite the 

encouraging results, suggesting that more testing and verification are required to 

determine the model's generalizability. 

To support sim-to-real transfer for robotics visual navigation, the study [14] presents 

SEER, a structured representation including navigability and depth data. Control 

policies trained in simulation can now generalize well across a wide range of contexts 

thanks to SEER, which dramatically outperforms current methods in bridging the 

domain gap between simulated and real-world environments. Although SEER 

exhibits encouraging outcomes, its dependence on simulated environments might 

present challenges in fully capturing all potential scenarios, hence requiring 

additional investigation and improvement to ensure strong real-world 

implementation. 

The authors of this paper [15] present a novel approach to researching the target 

search of robot swarms by integrating simulated and real robots. This paper 

specifically focuses on combining artificial potential fields with mechanical Particle 

Swarm Optimization (mechanical PSO). The results demonstrate the effectiveness 

and robustness of the proposed search method in achieving multiple targets for 
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swarm robots. However, it’s important to note that the findings may face challenges 

related to localization errors and accuracy. 

The authors in the paper [16] used an Automatic Modular Design approach called 

AutoMoDe. The study evaluated different exploration schemes, and the chosen 

schemes were found to meet the specific mission requirements. The method's 

strengths include its ability to explore a larger search space, resulting in more 

effective fulfillment of mission requirements.  

In 2021, the paper [17] utilized the Particle Swarm Optimization (PSO) algorithm 

Angle of Rotation (AoR) and Memory (Mem) in their toolkit. The experimental 

results demonstrated the algorithm's effectiveness as a swarm of robots successfully 

solved search problems in both simple and complex environments. The proposed 

method achieved a high success rate (100%) across different environment sizes, 

reflecting the nature of swarm intelligence. It also exhibited high efficiency in 

solving mazes of varying complexity levels and locating targets reliably within a 

reasonable time. However, it showed Sensitivity of algorithm parameters can impact 

performance.  

The authors in the paper [18] employed a Multi-Agent Deep Deterministic Policy 

Gradient algorithm (MADDPG) with Reinforcement Learning (RL). The paper 

aimed to investigate how human scientists assign primary tasks to robots and multi-

robot systems to explore unknown Mars surfaces. The results showed better 

efficiency than traditional deep RL algorithms in a collaborative multi-agent 

exploration environment. The proposed method is effective for collaborative space 

exploration, offering an alternative solution to the risks and costs of a single explorer. 

However, a potential weakness is identified: as the scale of the multi-agent system 

increases, the proposed optimizer may show reduced performance in mean episode 

rewards. 
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The paper [19] introduces a methodology using fully autonomous drones with 

various modules to facilitate experiments such as trajectory planner, trajectory-

broadcasting network, probabilistic mapping, drone removal module, VIO-based 

localization module, controller module, and planning module. These hardware 

modules facilitate comprehensive experimentation using a custom-designed micro-

platform assembled by the researchers, with their dataset available online. The 

effectiveness of the proposed planner is evaluated through real flights and 

simulations, as well as real-world experiments. Notable strengths include obstacle 

and collision avoidance but identified weaknesses include complexity in temporal 

optimizations and limited decision variables. 

The paper [20] explores new methods for improving robotic navigation, focusing on 

social interaction and reducing user intervention. It uses genetic algorithm 

optimization techniques to enhance the robot’s adaptability to social conditions and 

avoid collisions in dynamic environments. To simulate human walking behavior, it 

utilizes the actor model from Gazebo for a more realistic evaluation process. 

However, increasing environmental complexity may pose challenges and limit 

scalability, necessitating further research in this area. Overall, this research offers 

valuable insights into AI-driven approaches for enhancing robot navigation in 

human-centric environments. 

The paper [21] presents an innovative approach to the classic game of Tic-tac-toe, 

utilizing a swarm of nano-UAVs driven by a Reinforcement Learning (RL)-based 

algorithm. The methodology revolves around the implementation of this RL 

algorithm to enable the nano-UAVs to play the game interactively. The study shows 

how combining swarm robotics and reinforcement learning can make interactive and 

engaging experiences. Additionally, the researchers conducted a questionnaire-based 

survey to collect feedback from participants regarding their experience with the 

game. Results indicate a high level of excitement and engagement among 
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participants, particularly in response to the RL algorithm's performance. However, 

the study highlights the limitation of small sample size and the possibility of biases 

in participant feedback. 

3.2  Coordination 

[22] presents a hybrid machine learning method to learn how individual robots can 

control themselves by watching swarm behavior. The used method called 

knowledge-based neural ordinary differential equations (KNODE) which combined 

artificial neural networks with known agent dynamics. Testing showed that 

controllers worked well in both 2D and 3D environments and could handle larger 

swarms. The approach has been proven to be efficient and scalable for robot swarms 

since it does not need detailed action data and can work with large groups of robots. 

A study of speeding up the process and finding good robot group setups that worked 

well in new situations was performed [23]. Surrogate models based on Gaussian 

processes and artificial neural networks to predict robot behavior were proposed 

where a hybrid evolutionary algorithm combining a genetic algorithm and a local 

search for optimal robot configurations. A simulation tool was used to test and 

validate the robot swarm formations by the researcher where the optimized robot 

formations were stable in a majority of new, unseen scenarios. 

In the research of [24], a hardware module was designed and introduced that enables 

swarm robots to locate each other and communicate through audio. The used model 

was AudioLocNet, which is ais a deep neural network (DNN) designed to localize 

sound sources using three convolutional neural networks (CNNs). With the help of 

its deep learning module, it was capable of performing localization in challenging 

environments, such as those with non-line-of-sight and reverb. To support concurrent 

transmission, it uses orthogonal audio chirps and has an audio message frame design 

that balances localization accuracy and communication speed.  
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AI's ability to maintain formation and coordinate autonomously in challenging 

environments and the potential of neuro-evolutionary algorithms called Hill Climb 

Assembler Encoding for underwater vehicle swarms are highlighted by [25]. A 

neural control system is introduced where the leader vehicle guides followers using 

information from sonar and cameras to avoid obstacles, while followers follow the 

leader in a specific formation and avoid each other, the leader, and obstacles detected 

by the leader. The approach was tested in simulated underwater conditions, paving 

the way for sophisticated underwater exploration and monitoring tasks with high 

autonomy and minimal collision risk. 

The study of [26] examines the development of self-coordination and 

communication in a computer-simulated ant colony using spiking neural networks 

through an evolutionary optimization process. By utilizing SNNs, the 

Electrophysiology Analysis Toolkit, and the L2L framework in the methodology, it 

is demonstrated that pheromone-based communication improves the foraging 

performance of ants. The paper effectively shows how self-coordination and 

communication can emerge under the control of SNNs. 

To manage the density of robotic swarms within a certain spatial region, the study of 

[27] presents a mean-field feedback control technique, and the simulation shows its 

effectiveness. The study advances knowledge of swarm control problems and makes 

use of weak solutions to streamline system analysis by providing a concise 

description of the control strategy and robustness analysis. To determine the paper's 

practical applicability and scalability, more empirical validation in various contexts 

and with different swarm sizes is required. 

In 2021, a study [28] utilized Deep Learning (DL) technology to develop a pairwise 

interaction model for real fish interactions and integrated the model into the 

collective motion control of multi-agents across different scales. The methodology 
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involved using a Deep Neural Network (DNN) model. They propose a novel key 

neighbor selection strategy, which is called the Largest Visual Pressure Selection 

(LVPS), the individual uses the properly trained DNN model for the pairwise 

interaction. The result shows simplicity, broad applicability, and computational 

efficiency. The proposed method can predict collision avoidance capabilities. The 

dataset used in this study is experimental data of collective motion on Hemigrammus 

rhodesterus fish.  

In the paper [29], the authors used a 6-PPSS redundant mobile platform and included 

an Extended Kalman Filter routine. They also applied a variant of the crawling 

probabilistic road map motion planning algorithm. The model used is inspired by 

how insects move objects around while avoiding obstacles. The study showed that a 

robotic swarm carrying a load could successfully move through cluttered space. The 

use of the Extended Kalman Filter was effective in reducing estimation errors in 

relative locations, especially when position information is shared among agents, but 

it was noted to be impacted by location uncertainty and sensor noise. 

The study [30] proposes a new model that integrates synchronization and swarming 

for coordination in both time and space. It utilizes a time-discrete swarm aggregation 

model and specific functions that combine this spatial model with a discrete temporal 

coordination model, resulting in a discrete spatio-temporal coordination model. It 

focuses on low-update-rate coordination across space and time. The research 

validates the model in both simulation and real-life scenarios using real small robots 

and drones. This model enables robust multi-robot coordination, which is crucial for 

applications requiring accurate timing and spatial arrangements.  

A study conducted by [31] has developed a control method that employs AI 

techniques to help robots maintain formation while tracking a dynamic target. The 

study tested this approach in real-world settings with robots on wheels. The results 

https://doi.org/10.59992/IJCI.2024.v3n5p4


 
 

113 
 

International Journal of Computers and Informatics, London  Vol (3), No (5), 2024 

https://doi.org/10.59992/IJCI.2024.v3n5p4                                                  E-ISSN 2976-9361 
 

were quite promising, as this method proved to be highly effective even under 

unpredictable conditions. These findings highlight the adaptability and reliability of 

the designed control strategies in managing complex dynamic environments, 

particularly in the fields of farming, surveillance, and space exploration. 

A study by [32] highlights the potential of neural networks in advancing autonomous 

robotic systems it investigates how robots can learn to coordinate and communicate 

effectively through imitation learning algorithms and training neural networks for 

task-specific interactions. By utilizing communication strategies in robot swarms, 

their performance can be improved, allowing them to make decisions almost as well 

as an expert controller with full knowledge of the environment. The evaluation was 

conducted in a simulated environment using Enki, a fast and powerful simulator, 

demonstrating that communication between robots significantly enhances their 

decision-making capabilities, mirroring the performance of a central controller. 

The paper [33] explores social learning through distributed online reinforcement 

learning and machine learning (ML) techniques. The research did not specify a 

particular dataset, learning begins when robots are deployed in real-life scenarios. It 

focuses on the implementation of social learning for swarm robotics, emphasizing 

local communication between robots. However, it is limited by its focus on real-life 

conditions rather than a controlled environment, which hinders the ability to isolate 

and analyze specific variables. 

The paper [34] explores the use of a swarm of robots to assist and protect migrants 

in challenging environments. The methodology involves a coordination algorithm 

that combines convolutional neural network (CNN) and fuzzy logic. Experiments 

were conducted using a dataset of 405 pictures obtained from the data provided by 

the IMU. The results offer valuable insights into aiding and safeguarding migrants 

within complex environments, showcasing high precision and recall rates for the 
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CNN model, allowing it to adapt to various situations. However, limitations such as 

the lack of real-world testing and difficulties in geo-localization are noted, suggesting 

areas for further research and improvement. 

3.3  Optimization 

[35] presented real-time locust management and crop protection using a swarm drone 

system for object detection and targeted pesticide spraying. A model for image 

recognition was designed using the YOLOv8 algorithm. a dataset of images of 

locusts collected and used to train the model. The research tests showed that AI and 

drone technology can significantly reduce crop damage caused by locusts exposing 

promise for sustainable agriculture. 

[36] discusses a study that integrated swarm intelligence with deep transfer learning 

for UAV image classification. The study has used the RetinaNet model for feature 

extraction, and a cascaded long short-term memory (CLSTM) model has been 

applied for classifying aerial images, resulting in enhanced classification accuracy. 

A wide range of simulations have been implemented to ensure the model's 

performance. The model is suitable for real-time environments and can be used for 

tasks such as vegetation mapping and disaster management. 

A possible solution to the problem of limited on-board computation in UAVs which 

makes it difficult to process complex models has been proposed by [37]. The solution 

involves distributing image classification tasks among a group of UAVs, enabling 

quick image recognition and faster decision-making. The proposed system model 

uses a swarm of UAVs for real-time image classification, employing Convolutional 

Neural Networks (CNNs) with different structures. The solution also includes an 

online heuristic solution to improve latency by efficiently placing layers among 

UAVs in CNNs. The proposed model outperformed the online solution, delivering 

better and faster results.  
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[38] introduces and verifies a defensive approach known as "Multi-Swarm StringNet 

Herding" developed to confront adversarial swarms with a group of defenders. The 

methodology develops and validates a decentralized version of the Mixed-Integer 

Quadratically Constrained Program to effectively allocate defenders to identified 

attacker swarms. The results show that this method enhances the original "StringNet 

Herding" technique, allowing defenders to guide all attackers towards a secure area 

even when they divide into small swarms. 

A new cooperative foraging behavior model based on pheromones for swarm 

robotics, utilizing a dynamic wave expansion neural network (DWENN) presented 

by [39]. The results highlight the model's capability to create resilient, adaptable, and 

scalable self-organizing behaviors among numerous robots, achieving efficient 

foraging with just two second waiting time. 

To achieve a reliable formation under different initial conditions, [40]   Focus on 

evolutionary optimization for determining swarm parameters like inter-robot 

distance to ensure stable formations using Genetic Algorithm (GA). The method's 

robustness was tested in realistic simulations which is ARGoS3 simulator, and real 

scenarios using E-Puck2 robots. Experiments prove effective in maintaining desired 

formations under diverse conditions. The inclusion of real robot validations 

illustrates the method’s applicability in practical settings, enhancing the self-

organization capabilities of robotic swarms. 

To enhance decision-making and path-planning efficiency for a group of robots, [41] 

Developed a novel quantum computing approach inspired by how ants find food. 

The method showed faster convergence and scalability in various swarm sizes 

compared to traditional models, indicating significant advancements in 

computational efficiency and potential for complex task applications like search and 

rescue. IBM Quantum simulator was used to test the quantum-based path-planning 
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algorithm and NetLogo and a Java-based simulator to model ant behavior in 

simulations. 

[42] develops a new model combining multiple AI techniques to enhance 

surveillance tasks in swarm robotics. Integration of Genetic algorithms, Cellular 

automata techniques, Inverted pheromones from ant colonies, and Tabu search was 

introduced by the researchers. An evaluation Testing with e-Puck architecture in in 

Webots simulation environment showed that the model excelled in reducing 

computation costs and navigating complex environments demonstrating the 

effectiveness of hybrid AI strategies in real-world applicable simulations for 

improved surveillance efficiency. 

In [43] using datasets gathered from the ARGoS simulator, ensemble learning 

models—specifically, Boosted Trees and Bagged Trees—have proven to be more 

accurate than more conventional machine learning methods in predicting the speed 

of swarm motion. Their scalability further demonstrates their robustness across a 

range of swarm sizes, which guarantees precise forecasts under various 

circumstances, including those involving barriers. 

In [44] the decentralized ergodic formulation for swarm control shows robustness 

against real-world problems including hardware failures and communication 

breakdowns. Testing shows that the system responds to user commands and 

environmental inputs efficiently by integrating dynamic task adaptation with ergodic 

planning. 

The complex behavior of bees was effectively simulated by the genetic algorithm-

based model presented by [45], which reproduced both the macro collective activity 

and the local body dynamics. Although the model did not achieve a perfect match 

with the real data, it did show realistic bee trajectories and offered insightful 

information about bee behavior. Further study and improvement will still be needed 
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to fully capture the complex motion dynamics and low-aligned, noisy behavior of 

bees. 

For trajectory tracking control of Cable-Driven Continuum Robots (CDCRs), the 

paper [46] suggests a Fractional-Order Proportional-Integral-Derivative (FOPID) 

controller optimized by Particle Swarm Optimization (PSO). Simulation results 

show that the FOPID controller works well for CDCR trajectory tracking, producing 

smoother control signals and better tracking accuracy when compared to optimized 

and conventional PID controllers. However, the investigation of real-world 

implementation issues is necessary. 

[47] proposes a Swarm Deep Reinforcement Learning (SDRL) method based on 

blockchain to enhance robotic manipulation learning speed and utilize data sharing 

among robotic agents. The decentralized approach allows individual robots to learn 

faster and the integration of blockchain technology provides a unique approach to 

privacy and data integrity in swarm learning environments. The model was tested in 

simulation using OpenAI Gym's MoJoCo simulators. Additionally, the proposed 

SDRL scheme was evaluated using real robots proving its performance and 

efficiency.  

A new Particle Swarm Optimization algorithm, called Adapted Particle Swarm 

Optimization (PSO) was successfully developed by [48]. The proposed algorithm is 

a revised version of PSO that is specifically designed for controlling robotic swarms 

by considering the robots' physical capabilities like speed and how quickly they can 

speed up or slow down and avoid crashing into things to improve navigation and 

survivability in obstacle-rich environments. Testing was demonstrated through 

MATLAB and Gazebo simulations showing better performance in guiding robots 

through difficult areas. 
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In the paper [49] the authors employed the Robot Bean Optimization Algorithm 

(RBOA) within the context of Swarm Unmanned Aerial Vehicles (UAVs). The 

results obtained from search simulations show that the RBOA performs better than 

other approaches. Its strengths include fast and effective search capabilities, 

distributed collaborative interaction, and swarm intelligence emergence. However, it 

is mainly suitable for scenarios with smaller numbers of robots due to its focus on 

solving a single-target searching problem. 

The paper [50] presents a methodology that uses an automatic modular design 

approach, namely AutoMoDe-Cedrata and AutoMoDe-Maple. However, the paper 

does not specify a particular dataset. The outcomes indicate that the suggested 

modules allow for the development of efficient behavior trees for robot swarms. The 

strength is the efficacy of AutoMoDe-Cedrata in producing control software for 

robot swarms. However, a weakness in Cedrata's is the difficulty in automatically 

generating control software with performance comparable to human-designed 

software, particularly when communication capabilities are required. 

The paper [51] introduces an innovative approach to contractor selection by applying 

AI techniques based on the PSO algorithm. The methodology involves collecting 

real-world data on contractors, including cost, quality, and time performance. The 

study utilizes a dataset available online to train and validate the AI-driven PSO 

method. The results highlight the effectiveness of this approach in achieving optimal 

contractor selection, offering valuable insights for project managers and stakeholders 

involved in the process. Notable strengths of the study include its use of real-world 

data, enhancing the relevance and applicability of the findings. 

The paper [52] introduces a novel approach to generating collective behavior in 

multi-legged robotic swarms. focuses on employing the Proximal Policy 

Optimization (PPO) algorithm to generate collective behavior in a multi-legged 
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robotic swarm. The methodology involves utilizing deep reinforcement learning 

within the PPO framework to design controllers for the robotic swarm. Through 

computer simulations, the study illustrates the effectiveness of PPO in generating 

collective behavior and designing robot controllers capable. However, the study 

highlights the limitation of lacking experimental validation in real-world scenarios. 

in 2024, The paper [53] delves into the transformative potential of swarm intelligence 

in revolutionizing electric vehicle (EV) technologies. The study introduces an 

intelligent control framework that integrates conventional EV control techniques 

with swarm robotics principles, Results show that electric cars driven by swarm 

algorithms exhibit remarkable adaptability, effective navigation, and energy 

optimization capabilities. This underscores the flexibility and optimization prowess 

of swarm robotics in managing electric vehicles. Furthermore, the study underscores 

the significance of robust communication protocols, efficient algorithms, and the 

validation of findings through practical experiments, emphasizing the importance of 

ensuring the reliability and applicability of swarm-driven electric vehicle 

technologies in real-world scenarios. 

The paper [54] published in 2023, introduces a novel methodology to address the 

optimization challenge of routing robot swarms within sorting centers. By utilizing 

a multi-agent event-based simulation framework coupled with an event-driven 

architecture known as COS.SIM and integrating the Dijkstra algorithm. The 

researchers conducted experiments using their own dataset available online. Results 

indicate that the introduced approach achieves fast convergence to high-quality 

solutions, and outperforms the current state-of-the-art algorithms 

The paper [55] focuses on optimizing communication, energy transfer, and control 

for underwater robots. The researchers utilized magnetic induction for 

communication and wireless energy transfer. Results showed that wireless charging 
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underwater is possible and their methods effectively maintained network integrity 

while efficiently transferring energy for the robots’ tasks. Their solutions were 

praised for keeping the network strong and transferring energy well, but they noted 

that their approach might not work as well for larger groups of robots. 

3.4  Fault detection 

The use of real robots underscores the practicality of swarm robotics systems in real 

environments, showing the potential for AI strategies in fault detection and 

adaptability. An evolutionary algorithm to optimize swarm parameters for a swarm 

of autonomous robots self-organizing proposed by [56] where a Genetic Algorithm 

(GA) and a Local Search algorithm (LS) were used as part of a High-level Relay 

Hybridization (HRH) approach to find the best solutions for robot formation. An 

evaluation was applied by the researchers using the ARGoS simulator and E-Puck2 

Real-world robots where the proposal was successfully validated and demonstrated 

high fault tolerance and the capability to rebuild formations effectively. 

4. Discussion 

In the Discussion section, we thoroughly examine the findings obtained from this 

review on AI-driven approaches in swarm robotics, Addressing the core research 

questions related to the application of AI in swarm robotics, AI algorithms employed, 

and the advantages of using them in real-world scenarios with the aim to uncover 

any gaps that require further exploration. 

After extensive filtering and analysis, 53 scientific research articles were included in 

this study. The review found that AI plays four key roles in swarm robotics: swarm 

navigation, coordination, optimization, and fault detection. These roles enhance the 

capabilities of robot swarms in different applications. 

 

https://doi.org/10.59992/IJCI.2024.v3n5p4


 
 

121 
 

International Journal of Computers and Informatics, London  Vol (3), No (5), 2024 

https://doi.org/10.59992/IJCI.2024.v3n5p4                                                  E-ISSN 2976-9361 
 

 
Fig. 2.  AI roles included in research papers. 

 

The distribution of AI roles in swarm robotics, as identified from the included 

studies, is depicted in Fig. 2 Optimization 41% emerged as the most prevalent, 

followed by swarm navigation 33% and coordination 24%. Additionally, only 2% 

accounted for swarm fault detection. The review emphasizes the importance of AI-

driven optimization techniques in maximizing efficiency and performance but also 

highlights the need for further research and development in navigation and 

coordination to ensure robust behavior in real-world applications. 
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Fig. 3.  Types of testing environment in research papers. 

 

The testing environments utilized in the included studies are shown in Fig. 3 The 

study found that 72% of the research employed simulations, 17% utilized a 

combination of simulation and real-world scenarios, and 2% did not specify any 

testing environment. Moreover, 9% of the studies conducted experiments only in 

real-world scenarios. 

Research Question (RQ1) aims to explore the application of artificial intelligence in 

swarm robotics. The review identified four main roles of AI in this field: swarm 

navigation, coordination, optimization, and fault detection. These roles enhance the 

capabilities of robot swarms in different applications. 

1. Swarm Navigation: AI facilitates the movement of robot swarms around 

obstacles and navigation within their environment. 

2. Swarm Coordination: AI empowers robots to collaborate and synchronize their 

actions without centralized control. 

3. Swarm Optimization: AI algorithms assist robot swarms in optimizing 

performance and efficiently accomplishing tasks. 

4. Swarm Fault Detection: AI systems can identify and resolve issues within a 

17%
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Simulation and Real-
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robot swarm, ensuring smooth operation. 

These applications of AI play a crucial role in enhancing the capabilities and 

performance of robot swarms across diverse tasks and environments. 
 

 
Fig. 4.  The most common AI Algorithm used for swarm robotics. 

 

Research Question (RQ2) investigates the specific AI algorithms employed in swarm 

robotics. Fig. 4 shows the most common AI algorithms used for swarm robotics as 

identified by this review which include: 

1. Reinforcement Learning (RL) Algorithms: enable robots to learn optimal 

behaviors through trial and error. 

2. Particle Swarm Optimization (PSO): Guides robots to find optimal solutions 

for tasks like path planning. 

3. Genetic Algorithms: Evolve robot behaviors and strategies based on genetic 

variation. 

4. Artificial Neural Networks (ANNs): ANNs are utilized for learning complex 

mappings between sensory inputs and motor outputs, enabling robots to adapt 

their behavior based on experience and feedback. 
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5. Deep Reinforcement Learning (DRL): DRL combines reinforcement learning 

with deep neural networks to enable robots to learn complex behaviors directly 

from raw sensor data, without the need for explicit programming. 
 

These algorithms enable robot swarms to adapt and optimize their behavior in 

complex environments, enhancing their overall performance. 

In Figure 4, the most prevalent algorithm is Genetic Algorithms (GA) at 27%, 

followed by Particle Swarm Optimization (PSO) and Reinforcement Learning (RL) 

algorithms, each at 23%. Deep Reinforcement Learning (DRL) is 18%, Moreover 

Artificial Neural Networks (ANNs) represent 9% of the utilized algorithms. These 

findings highlight the prevalence of these AI techniques as identified by this review. 

Additionally, Table 1 displays further algorithms identified within the scope of this 

study. 

Research Question (RQ3) aims to understand the practical benefits of applying 

swarm robotics in real-world applications. Some potential benefits include: 

1. Improved Efficiency: Swarm robotics can complete tasks like search and rescue 

more quickly and effectively than traditional methods. 

2. Enhanced Exploration: Swarm robotics enables efficient exploration of 

unknown or hazardous environments, such as disaster zones, space, or 

underground mines, where human access is limited or unsafe. 

3. Adaptive Response: Swarm robotics systems can dynamically adapt their 

behavior and strategies in response to changing environmental conditions or 

task requirements, ensuring robust and flexible performance. 

4. Collaborative Problem-Solving: Swarm robotics fosters collaborative problem-

solving by leveraging the collective intelligence of multiple robots, allowing 

for the efficient completion of complex tasks that exceed the capabilities of 

individual agents. 
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These benefits highlight the potential of swarm robotics to address real-world 

challenges effectively and efficiently. 

In Table 1, we provide a summary of the papers included in this review, outlining 

the AI role, testing types (simulation and real-world), and the corresponding 

algorithm/model name. This concise overview facilitates a comprehensive 

understanding of the diverse applications of AI in swarm robotics, alongside the 

testing environments and specific methodologies employed across the studies. 
 

Table 1. Summary of the Papers Included in this Review. 
 

R
eferen

ce 

AI Role 

Testing 

type 
 

S
im

u
latio

n
 

R
eal-w

o
rld

 

Algorithm / model name 

[4] Navigation - - Not specified 
[13] - √ Large language model (LLM) 

[21] - √ RL algorithm 

[5] √ - Dueling Double Deep Q-Network (D3QN) 
[6] √ - Deep Learning Trained by Genetic Algorithm (DL-GA) 

[8] √ - 3D StringNet herding 

[10] √ - Decision-making mechanisms 
[12] √ - Deep Imitation Reinforcement Learning (DIRL) 

[17] √ - Particle swarm optimization (PSO) algorithm 

[18] √ - Multi-agent deep deterministic policy gradient algorithm (MADDPG) and RL algorithms 
[7] √ √ Deep reinforcement learning 

[14] √ √ Counterfactual multi-agent policy gradients (COMA) algorithm  

[15] √ √ Actor-critic neural networks (ACNN) 
[16] √ √ SEER representation 

[19] √ √ Augmented Lagrangian particle swarm optimization (ALPSO)  

[20] √ √ Automatic modular design approach (AutoMoDe) 

[24] Coordination - √ AudioLocNetv(deep learning module) 

[31] √ - Not specified 

[32] √ - End-to-end Neural Networks to train robots 
[27] √ - Mean-field feedback control 

[28] √ - Deep Neural Network (DNN) model 

[29] √ - variant of the crawling probabilistic road map motion planning algorithm 
[33] √ - distributed online reinforcement learning method 

[34] √ - coordination algorithm 

[51] Optimization - √ PSO algorithm 

[53] - √ streamlined algorithms 
[36] √ 

- 
RetinaNet model, Salp Swarm Algorithm (SSA), Cascaded Long Short-Term Memory (CLSTM) 

model and Seeker Optimization Algorithm (SOA) 
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[37] √ 
- Distributing different layers of Convolutional Neural Networks (CNNs) 

[47] √ 
- 

Decentralized deep reinforcement learning technology based on blockchain and Proximal Policy 

Optimization (PPO) 
[48] √ - Adapted PSO 

[38] √ - BSCAN, MIQCP and StringNet Herding 

[39] √ - Dynamic wave expansion neural network (DWENN) 
[43] √ - Boosted Trees (BST) and Bagged Trees (BT) 

[45] √ - Genetic algorithm (GA) 

[46] √ - Particle Swarm Optimization (PSO) 
[49] √ - Robot Bean Optimization Algorithm (RBOA) 

[50] √ - Automatic modular design method: AutoMoDe-Cedrata and AutoMoDe-Maple 

[52] √ - PPO algorithm 

[54] √ - Dijkstra algorithm 

[55] √ - WC and WET algorithms 
[44] √ √ Decentralized ergodic planning 

[35] Optimization 

and 
Navigation 

√ - YOLOv8 

[41] √ - Quantum-based path-planning algorithm and Grover's search algorithm 
[42] √ - Genetic algorithms (GA) and Cellular automata techniques 

[9] √ - Mean-Field Control (MFC), deep reinforcement learning (RL), and collision avoidance algorithms 

[22] Optimization 
and 

Coordination 

√ - Knowledge-Based Neural Ordinary Differential Equations (KNODE) 

[23] √ 
- 

Surrogate models based on Gaussian processes (GPs), Artificial neural networks (ANNs) A hybrid 

evolutionary algorithm (HEA) 
[40] √ - Genetic Algorithm (GA) 

[30] √ - Not specified 

[26] √ - Genetic Algorithm (GA) 

[11] Coordination 

and  

Navigation 

√ - ROS-NetSim 

[25] √ √ Neuro-evolutionary algorithm called Hill Climb Assembler Encoding 

[56] Fault 

Detection 

Optimization  
Coordination 

√ √ evolutionary algorithm, Genetic Algorithm (GA) and Local Search algorithm (LS) 

 

Overall, the findings of this systematic review offer valuable insights into the various 

applications of AI in swarm robotics and highlight the importance of continued 

research and innovation in this rapidly evolving field. 

5. Conclusion and Future Work Directions 

In conclusion, this systematic review has provided valuable insights into the current 

landscape of AI-driven approaches in swarm robotics. The study identified four key 

roles of AI in swarm robotics, including swarm navigation, coordination, 

optimization, and fault detection. These roles play a crucial role in enhancing the 

capabilities of robot swarms across various applications. 
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For future research, researchers should consider conducting real-world testing to 

enhance the applicability of AI-driven swarm robotics solutions. Furthermore, 

further exploration of AI algorithms and techniques tailored specifically for swarm 

robotics applications is needed. This includes developing more advanced fault 

detection and coordination strategies to improve swarm efficiency and adaptability. 

Additionally, future research should also focus on addressing the challenges and 

limitations identified in this systematic review, such as the lack of real-world testing 

and potential biases in participant feedback. 

Overall, this systematic review provides a foundation for future research efforts in 

AI-driven swarm robotics, opening new opportunities for diverse applications.  
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