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Abstract 

We consider the nonlinear neutral differential equation: 

𝑑

𝑑𝑡
𝑥(𝑡) = − ∏ 𝑎𝑖(𝑡)

𝑝

𝑖=1

𝑥(𝑡) +
𝑑

𝑑𝑡
∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))

𝑝

𝑖=1

+ ∫ [∏ 𝐷𝑖(𝑡, 𝑠)

𝑝

𝑖=1

𝑓(𝑥(𝑠)) + ℎ(𝑠)]

𝑡

−∞

𝑑𝑠

+  𝐺 (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡))) 

and use the contraction mapping principle to show the asymptotic stability of the 

zero solution provided that 𝑄(𝑡, 0) = 𝑓(0) = 0. 

Keywords: Contraction Mapping, Stability, Nonlinear Neutral, Differential 

Equation, Integral Equation. 

1. Introduction 

There have been widely varied solutions for stabilization, Lyapunov's direct 

methodology being the most renowned. The Lyapunov methodology for the 

broadly differential equations have been terribly effective in establishing the 

result for stability see [2,4,5], as well as in establishing the existence of periodic 

solutions of differential equations with functional delays see [1]. However, there 
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have bee certain issues despite the efficacy of Lyapunov's technique if the 

functions of equations are unbounded with time and the derivative of the delay is 

not small and the complexity of generating the Lyapunov function, it is a kind of 

art to finding this function. Researchers have been working on discovering fresh 

ways of avoiding those problems. [6] noted that some of these issues 

disappearing when implementing the fixed-point theory. Due to the simplicity of 

a fixed-point method in comparison with the Lyapunov method, the fixed-point 

method has become an important instrument to show the existence and 

uniqueness of solutions and to study the solution's stability in a multitude of 

mathematical problems. There for, many studies have been published on subject 

of periodicity and stability of nonlinear neutral equations see[7,8 ,9,10 ]. 

In [3] discussed the existence and unique- ness of periodic solutions of 

𝑑

𝑑𝑡
𝑥(𝑡) = − ∏ 𝑎𝑖(𝑡)𝑝

𝑖=1 𝑥(𝑡) +
𝑑

𝑑𝑡
∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝

𝑖=1 +  

∫ [∏ 𝐷𝑖(𝑡, 𝑠)𝑝
𝑖=1 𝑓(𝑥(𝑠)) + ℎ(𝑠)]

𝑡

−∞
𝑑𝑠 +    𝐺 (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)))      (1.1) 

by assuming 𝑎(𝑡) is a continuous real-valued function. Taking into 

consideration 

𝑄: ℝ × ℝ → ℝ, 𝐷: ℝ × ℝ → ℝ, 𝑓: ℝ → ℝ, 𝑥: ℝ → ℝ, G: ℝ × ℝ× ℝ → ℝ 

𝑎𝑛𝑑 ℎ: ℝ → ℝ are continuous functions and to ensure periodicity the 

following assumption has been made 

𝑎(𝑡), 𝑔(𝑡), 𝐷 (𝑡, 𝑥), 𝑄 (𝑡, 𝑥) a n d  G (𝑡, 𝑥, y) are periodic functions.  

Also, let 𝐶𝑇 stand for the set of all continuous scalar functions 𝑥(𝑡) periodic in 

𝑡 of period T. 

This paper is mainly concerned with the asymptotic stability of the zero 

solution on the eq.(1.1), as follows we have to mutate eq. (1.1) to an integral 

mapping equation appropriate for the contraction mapping theorems. This 

article is organized as follows: Section 2 presents the hypotheses to be used in 

the later sections, it also introduces Lemma 2.1 that converts eq. (1.1) into an 
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essential equation, and Section 3 presents the main results. 

2. Preliminaries 

In this section, we introduce some significant notations. It is appropriate to 

assume the following conditions. Let 𝑄 (𝑡, 𝑥), G (𝑡, 𝑥, y) and 𝑓(𝑥) be globally 

Lipschitz. So, for 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6 and 𝐾 are positive constants such that, 

                  ∑ |𝑄𝑖(𝑡, 𝑥) − 𝑄𝑖(𝑡, 𝑦)|𝑝
𝑖=1 ≤ 𝐸1‖𝑥 − 𝑦‖                                                     (2.1) 

                                 |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐸2‖𝑥 − 𝑦‖                                               (2.2) 

             ∫ ∏ |𝐷𝑖(𝑡, 𝑠)|𝑝
𝑖=1

𝑡

−∞
𝑑𝑠 ≤ 𝐸3 < ∞, ℎ(𝑠) ≤ 𝐸4 ≤ 𝐾𝐸4                                        (2.3) 

and, 

                      |𝐺(𝑡, 𝑥, 𝑦) − 𝐺(𝑡, 𝑤, 𝑧)| ≤ 𝐸5‖𝑥 − 𝑤 ‖ +  𝐸6‖𝑦 − 𝑧 ‖                                 (2.4)     

 

The following lemma helps transform eq. (1.1) to an integral corresponding 

equation. 

Lemma 2.1 

          Let 𝑄(𝑡, 𝑥), 𝐷(𝑡, 𝑠),   𝑎(𝑡), 𝑓(𝑡), 𝑥(𝑡), 𝑔(𝑡),  ℎ(𝑡)  𝑎𝑛𝑑 𝐺(𝑡, 𝑥, 𝑦) are 

defined  as above, then 𝑥(𝑡) is a solution of eq. (1.1) if and only if 

𝑥(𝑡) = ∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝
𝑖=1 + [𝑥(0) − ∑ 𝑄𝑖 (0, 𝑥(0 − 𝑔(0)))𝑝

𝑖=1 ] 𝑒− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0   

+ ∫ [− ∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 ∑ 𝑄𝑖 (𝑢, 𝑥(𝑢 − 𝑔(𝑢))) + ∫ [∏ 𝐷𝑖(𝑢, 𝑠)𝑝

𝑖=1 𝑓(𝑥(𝑠)) + ℎ(𝑠)]
𝑢

−∞
𝑑𝑠 +𝑝

𝑖=1

𝑡

𝑡−𝑇

                                 𝐺 (𝑢, 𝑥(𝑢), 𝑥(𝑢 − 𝜏(𝑢))) ] 𝑒− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0 𝑑𝑢                                        (2.5) 

Proof. 

Let 𝑥(𝑡) ∈ 𝐶𝑇 be a solution of eq. (1.1). Now, by writing eq. (1.1) as 

𝑑

𝑑𝑡
𝑥(𝑡) = − ∏ 𝑎𝑖(𝑡)𝑝

𝑖=1 𝑥(𝑡) +
𝑑

𝑑𝑡
∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝

𝑖=1 + ∫ [∏ 𝐷𝑖(𝑡, 𝑠)𝑝
𝑖=1 𝑓(𝑥(𝑠)) +

𝑡

−∞

ℎ(𝑠)] 𝑑𝑠 +  𝐺 (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)))  
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Adding ∏ 𝑎𝑖(𝑡)𝑝
𝑖=1 ∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝

𝑖=1  to both sides of the last equation, we find:  

𝑑

𝑑𝑡
[𝑥(𝑡) − ∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝

𝑖=1 ] = − ∏ 𝑎𝑖(𝑡)𝑝
𝑖=1 [𝑥(𝑡) − ∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝

𝑖=1 ]     

  − ∏ 𝑎𝑖(𝑡)𝑝
𝑖=1 ∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝

𝑖=1 + ∫ [∏ 𝐷𝑖(𝑡, 𝑠)𝑝
𝑖=1 𝑓(𝑥(𝑠)) + ℎ(𝑠)]

𝑡

−∞
𝑑𝑠 +

                   𝐺 (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)))                                                                                          (2.6) 

Now, multiply both sides of (2.6) by e∫ ∏ 𝑎𝑖(𝑘)
𝑝
𝑖=1 𝑑𝑘

t

0  , then integrate from 0 to 𝑡, 

we have:  

[𝑥(𝑡) − ∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝
𝑖=1 ] 𝑒∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
𝑡

0 − [𝑥(0) − ∑ 𝑄𝑖 (0, 𝑥(0 −𝑝
𝑖=1

𝑔(0)))] 𝑒∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0      

= ∫ [− ∏ 𝑎𝑖(𝑡)𝑝
𝑖=1 ∑ 𝑄𝑖 (𝑢, 𝑥(𝑢 − 𝑔(𝑢))) + ∫ [∏ 𝐷𝑖(𝑢, 𝑠)𝑝

𝑖=1 𝑓(𝑥(𝑠)) + ℎ(𝑠)]
𝑢

−∞
𝑑𝑠 +𝑝

𝑖=1

𝑡

0

𝐺 (𝑢, 𝑥(𝑢), 𝑥(𝑢 − 𝜏(𝑢))) ] 𝑒∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0 𝑑𝑢  

= ∫ [− ∏ 𝑎𝑖(𝑡)

𝑝

𝑖=1

∑ 𝑄𝑖 (𝑢, 𝑥(𝑢 − 𝑔(𝑢))) + ∫ [∏ 𝐷𝑖(𝑢, 𝑠)

𝑝

𝑖=1

𝑓(𝑥(𝑠)) + ℎ(𝑠)]

𝑢

−∞

𝑑𝑠

𝑝

𝑖=1

𝑡

0

+ 𝐺 (𝑢, 𝑥(𝑢), 𝑥(𝑢 − 𝜏(𝑢))) ] 𝑒∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0 𝑑𝑢 

Now, by dividing both sides of the above equation by e∫ ∏ 𝑎𝑖(𝑘)
𝑝
𝑖=1 𝑑𝑘

t

0 , we get: 

𝑥(𝑡) = ∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))𝑝
𝑖=1 + [𝑥(0) − ∑ 𝑄𝑖 (0, 𝑥(0 − 𝑔(0)))𝑝

𝑖=1 ] 𝑒− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0   

+ ∫ [− ∏ 𝑎𝑖(𝑢)

𝑝

𝑖=1

∑ 𝑄𝑖 (𝑢, 𝑥(𝑢 − 𝑔(𝑢))) + ∫ [∏ 𝐷𝑖(𝑢, 𝑠)

𝑝

𝑖=1

𝑓(𝑥(𝑠)) + ℎ(𝑠)]

𝑢

−∞

𝑑𝑠

𝑝

𝑖=1

𝑡

0

+  𝐺 (𝑢, 𝑥(𝑢), 𝑥(𝑢 − 𝜏(𝑢))) ] 𝑒− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0 𝑑𝑢 

Thus, we see that 𝑥 is a solution of eq. (1.1).  
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3. Main Results 

The methods employed in this section are adapted from the paper [1] we are 

supposing that 𝑔 (𝑡), 𝑓 (𝑡)  and 𝜏(𝑡) are continuous, 𝑔 (𝑡) > 0 and 𝑄(𝑡, 0) = 𝑓(0) 

= 0. Let, 𝜓(𝑡): (−∞, 0] → ℝ gives continuous bounded initial function. 

We say 𝑥(𝑡) ≔ 𝑥(𝑡 , 0 , 𝜓 ) is a solution of eq.(1.1) if   𝑥(𝑡) =  𝜓(𝑡) for 𝑡 ≤

0   and satisfies Eq(1.2)  for  𝑡 ≥ 0.   

We say the zero solution of eq.(1.1)  is stable at 𝑡0  if for each 𝜀 >

0 there is 𝑎 𝛿 = 𝛿(𝜀) > 0,such that [𝜓 ∶  (−∞ , 𝑡0]𝑇  → ℝ   with ‖𝜓‖  <

 𝛿 ] 𝑜𝑛 (−∞, 0]implies  |𝑥(𝑡 , 𝑡0 , 𝜓 )| < 𝜀 . 

∫ ∏ 𝑎𝑖(𝑠)𝑑𝑠𝑝
𝑖=1 > 0   𝑎𝑛𝑑    e− ∫ ∏ 𝑎𝑖(𝑠)𝑝

𝑖=1 𝑑𝑠
t

0   → 0 , 𝑎𝑠 𝑡 → ∞                                       
𝑡

0
          (3.1) 

There is an  α > 0 such that 

𝐸1 + ∫ [|∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 | 𝐸1 + 𝐸2𝐸3 + 𝐸4 + 𝐸5  + 𝐸6]

𝑡

0
 e− ∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
t

u 𝑑𝑢 ≤ 𝛼 < 1                (3.2) 

𝑡 − 𝑔(𝑡) → ∞  , 𝑎𝑠 𝑡 → ∞                                                                                                           (3.3) 

𝑄(𝑡, 0) → 0, as 𝑡 → ∞                                                                                                 (3.4)    

𝐺(𝑡, 0,0) → 0  , 𝑎𝑠 𝑡 → ∞                                                                                                       (3.5) 

Where, 𝐸1, 𝐸2, 𝐸3 ,𝐸4, 𝐸5  and 𝐸6 are defined in inequalities (2.1) _ (2.4). 

Theorem 3.1 

If the inequalities (2.1) -(2.4) and the conditions (3.1) -(3.5) hold, then every 

solution 𝑥(𝑡, 0, 𝜓) of eq. (1.1) with small continuous initial function 𝜓(𝑡) is 

bounded and approaches zero as 𝑡 → ∞. 

Moreover, the zero solution is stable at 𝑡0= 0 
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Proof.  

Define the mapping 𝑃: U → U   by   (𝑝𝜑)(𝑡)  =  𝜓(𝑡)  if 𝑡 ≤ 0  ,  and, if  t > 0 . 

We have 

(𝑝𝜑)(𝑡) = ∑ 𝑄𝑖 (𝑡, 𝜑(𝑡 − 𝑔(𝑡)))

𝑝

𝑖=1

+ [𝜓(0) − ∑ 𝑄𝑖 (0, 𝜓(0 − 𝑔(0)))

𝑝

𝑖=1

] 𝑒− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘    

𝑡
0  

+ ∫ [− ∏ 𝑎𝑖(𝑢)

𝑝

𝑖=1

∑ 𝑄𝑖 (𝑢, 𝜑(𝑢 − 𝑔(𝑢))) + ∫ [∏ 𝐷𝑖(𝑢, 𝑠)

𝑝

𝑖=1

𝑓(𝜑(𝑠)) + ℎ(𝑠)]

𝑢

−∞

𝑑𝑠

𝑝

𝑖=1

𝑡

0

+  𝐺 (𝑢, 𝜑(𝑢), 𝜑(𝑢 − 𝜏(𝑢))) ] 𝑒− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0 𝑑𝑢 

 It is noticeable that 𝜑 ∈ 𝑈, (𝑃𝜑)(𝑡) is continuous. Let 𝜑 ∈ 𝑈 with ‖𝜑‖ ≤ 𝐾 for 

some positive constant 𝐾. Let, 𝜓(𝑡) be small given continuous initial function 

with 𝛿 > 0, ‖𝜓‖ < 𝛿, then using (3.2) in the definition of (𝑃𝜑)(𝑡), we have: 

‖(𝑝𝜑)(𝑡)‖ ≤ 𝐸1𝑘 + (1 + 𝐸1)𝛿

+ ∫ [|∏ 𝑎𝑖(𝑢)

𝑝

𝑖=1

| 𝐸1𝐾 + 𝐸2𝐸3𝐾 + 𝐸4𝐾 + (𝐸5  + 𝐸6)𝐾] e− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

t
u 𝑑𝑢

𝑡

0

 

≤ (1 + 𝐸1)𝛿 + 𝐾(𝐸1 + ∫ [|∏ 𝑎𝑖(𝑢)

𝑝

𝑖=1

| 𝐸1 + 𝐸2𝐸3 + 𝐸4 + 𝐸5  + 𝐸6]
𝑡

0

 e− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

t
u )𝑑𝑢 

        ≤ (1 + 𝐸1)𝛿 + 𝐾𝛼 

Which implies that, ‖ (𝑃𝜑)(𝑡) ‖ ≤ K , for the right δ.  Thus, (3.4) implies 

(𝑃𝜑)(𝑡) is bounded. Next, we show that  (𝑃𝜑)(𝑡) → 0   as    t→ ∞  

The second term on the right side of (𝑃𝜑)(𝑡)  tends to zero, by condition (3.1). 

In addition, the first term on the right side tends to zero, because of (3.3), (3.4) 

and the fact that φ ∈ ℧. It is left to show that the integral term goes to zero  

as t → ∞  

Let ε > 0 be given and 𝜑 ∈ U with ‖𝜑‖ ≤ K , K> 0. Then, there exists a  t1 > 0  
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so that for t > t1, |𝜑(𝑡 − 𝑔)(𝑡)| < ε . Due to condition (3.1), there exists  

a t2 > t1 such that t > t2 implies that e
− ∫ ∏ 𝑎𝑖(𝑘)

𝑝
𝑖=1 𝑑𝑘

t

t1 <  
ε

αK
 .Thus for t > t2 , we 

have: 

|∫ [− ∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 ∑ 𝑄𝑖 (𝑢, 𝜑(𝑢 − 𝑔(𝑢))) + ∫ [∏ 𝐷𝑖(𝑢, 𝑠)𝑝

𝑖=1 𝑓(𝜑(𝑠)) + ℎ(𝑠)]
𝑢

−∞
𝑑𝑠 +𝑝

𝑖=1

𝑡

0

 𝐺 (𝑢, 𝜑(𝑢), 𝜑(𝑢 − 𝜏(𝑢))) ] 𝑒− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

𝑡
0 𝑑𝑢|   

≤ ∫ [|∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 | 𝐸1𝐾 + 𝐸2𝐸3𝐾 + 𝐸4𝐾 + (𝐸5  + 𝐸6)𝐾]e− ∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
t

u 𝑑𝑢
t1

0
 

           + ∫ [|∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 | 𝐸1ε + 𝐸2𝐸3ε + 𝐸4ε + (𝐸5  + 𝐸6)ε]e− ∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
t

u 𝑑𝑢
𝑡

t1
 

≤ 𝐾 ∫ [|∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 | 𝐸1 + 𝐸2𝐸3 + 𝐸4 + 𝐸5  + 𝐸6]e− ∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
t

u 𝑑𝑢
t1

0
 +ε ∫ [|∏ 𝑎𝑖(𝑢)𝑝

𝑖=1 | 𝐸1 +
𝑡

t1

𝐸2𝐸3 + 𝐸4 + 𝐸5  + 𝐸6]e− ∫ ∏ 𝑎𝑖(𝑘)𝑝
𝑖=1 𝑑𝑘

t
u 𝑑𝑢 

  ≤ 𝐾e
− ∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
t

t1 ∫ [|∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 | 𝐸1 + 𝐸2𝐸3 + 𝐸4 + 𝐸5  + 𝐸6]e− ∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
t1

u 𝑑𝑢 + 𝛼ε
t1

0
  

 ≤ 𝐾𝛼e
− ∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
t

t1 + 𝛼ε 

 ≤ ε + 𝛼ε 

Hence, (𝑝𝜑)(𝑡) → 0   𝑎𝑠   𝑡 →  ∞.  

It remains to show that (𝑝𝜑)(𝑡) is a contraction under the supremum norm. 

Theorem 3.2 

Let 𝐽 be a positive constant satisfying the inequality. 

𝐸1 + ∫ [|∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 | 𝐸1 + 𝐸2𝐸3]

𝑡

0
 e− ∫ ∏ 𝑎𝑖(𝑘)𝑝

𝑖=1 𝑑𝑘
t

u 𝑑𝑢 ≤ J ≤ 1                    (3.6) 

then (𝑃𝜑)(𝑡) is a contraction under the supremum norm. 

Proof. 

 Let  ℎ, ℊ ∈ ℧ . Then   |(𝑝ℎ)(𝑡) − (𝑝ℊ)(𝑡)| ≤ {𝐸1 + ∫ [|∏ 𝑎𝑖(𝑢)𝑝
𝑖=1 | 𝐸1 +

𝑡

0

𝐸2𝐸3] e− ∫ ∏ 𝑎𝑖(𝑘)
𝑝
𝑖=1 𝑑𝑘

t

u 𝑑𝑢} ‖ ℎ −  ℊ‖  

                                 ≤   𝛼‖ ℎ −  ℊ‖.  

Therefore, according to the principle of contraction mapping, (𝑃𝜑)(𝑡) is bound 
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and tends to be zero since 𝑡 is infinite, moreover, (𝑃𝜑)(𝑡) has a unique fixed point 

in 𝑈 that resolves eq. (1.1). The stability of the zero solution at 𝑡0 = 0 resulted 

from simply replacing 𝐾 with 𝜖. That ends the proof. 

4. conclusion 

In this paper, the nonlinear neutral first-order differential equation with 

functional delay eq. (1.1) has been transformed into an integral equation by using 

Lemma 2.1 The integral equation allows us to create a map that enables us to 

apply the concept of the contraction-map, which ensures us the stability of 

periodic solutions for a nonlinear neutral first-order differential equation.This 

allows us to create a map that enables us to apply the concept of the contraction-

map, which ensures us the stability of periodic solutions for a nonlinear neutral 

first-order differential equation with functional delay. 
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