

The Best Common Feature Between ii-Open and α –Open Sets

Sabih W. Askandar

Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq.

sabihqaqos@uomosul.edu.iq

Amir A. Mohammed

Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq.

amirabdulillah@uomosul.edu.iq

Abstract:

It is well known that for any topological space the family of all α —open sets is also a topological space. In this paper, we introduce a new description of ii-open sets in a topological space with proof that the family of ii-open sets is again a topological space.

Keywords:

 α –open sets and ii-open sets

IJSR, VSRP Publishing, UK Website: https://ijsr.vsrp.co.uk ISSN 2755-3418 (Online)

104

1. Introduction and Preliminaries

A systematic study of ii-open sets in topological spaces are presented recently in [8], [4] and [5]. The semi-open [6] and α —open sets [9] are considered the start of the appearance of the new classes of open sets that they came after, see for example [1], [3], [8] and [2].

Let (X, τ) be a topological space. Recall that, $M \subseteq X$ is open, if $M \in \tau$ or for all $m \in M$ there exists $0 \in \tau$ such that $m \in 0 \subseteq M$. Also, M is closed if M^C is open, M is α -open if $M \subseteq int(cl(int(M)))$, M is int-open [8] if there exists $\phi, X \neq 0 \in \tau$ such that int(M) = 0 and M is i-open [7] if there exists $\phi, X \neq 0 \in \tau$ such that $M \subseteq cl(M \cap 0)$.

In this paper, we denoted by τ° , τ^{c} , τ^{i} , τ^{int} and τ^{α} to be the family of open, closed, i-open, int-open and α -open sets respectively. Finally, $M \subseteq X$ is said to be to be ii-open if $M \in \tau^{i} \cap \tau^{int}$ and we denote by τ^{ii} to be the family of all ii-open sets.

2. Proving (X, τ^{ii}) is a topological space.

We begin this section by the following theorem:

Theorem2.1. ([7], [8]) For any topological space, all open sets are int-open, i-open, ii-open and α –open. Further, all α –open and ii-open sets are i-open.

Note that the converse of above theorem is not true in general.

Example2.2. Let $X = \{0, 1, 2, \dots, ...\},\$

 $\tau = \{\phi, \{0, 2, 3, \dots, ...\}, \{1, 2, 3, \dots, ...\}, \{2, 3, 4, \dots, ...\}, \{0\}, X\},\$

105

IJSR, VSRP Publishing, UK Website: https://ijsr.vsrp.co.uk

ISSN 2755-3418 (Online)

 $M = \{0,2\}$ is ii-open not α -open because $int(M) = \{0\}$, so $M \in \tau^{int}$. Now, $M \subseteq Cl(M \cap \{0,2,3,\dots,...\})$, thus, $M \in \tau^i$ and therefore, $M \in \tau^{ii}$. But $Cl(int(M)) = \{0\}$ and $M = \{0,2\} \not\subseteq int(Cl(int(M)))$.

Example2.3. Let $X = \{0,1,2\}$ and $\tau_1 = \{\phi, \{0\}, X\}, \tau_2 = \{\phi, \{0\}, \{1,2\}, X\}, \tau_3 = \{\phi, \{0\}, \{1\}, \{0,1\}, \{0,2\}, X\}$. Then, $\tau_1^{\alpha} = \tau_1^{int} = \tau_1^i = \tau_1^{ii} = \{\phi, \{0\}, \{0,1\}, \{0,2\}, X\}$ and $\tau_2^{int} = \{\phi, \{0\}, \{1,2\}, \{0,1\}, \{0,2\}, X\}, \tau_2^i = \{\phi, \{0\}, \{1,2\}, \{1\}, \{2\}, X\}$. Therefore, $\tau_2^{ii} = \tau_2^i \cap \tau_2^{int} = \{\phi, \{0\}, \{1,2\}, X\}$ and $\tau_2 = \tau_2^{\alpha} = \tau_2^{ii}$. Finally, $\tau_3^{int} = \{\phi, \{0\}, \{1\}, \{0,1\}, \{0,2\}, \{1,2\}, X\}, \tau_3^i = \{\phi, \{0\}, \{1\}, \{0,2\}, \{2\}, X\}$. Therefore, $\tau_3^{ii} = \tau_3$ and $\tau_3^{\alpha} = \tau_3^{ii}$.

Now, from Theorem 2.1 and above examples we conclude the following diagram:

Fig.1.

106

IJSR, VSRP Publishing, UK Website: https://ijsr.vsrp.co.uk ISSN 2755-3418 (Online)

Now, we prove our main result:

Theorem2.4. (*X*, τ^{ii}) is a topological space.

Proof. Let $M \subseteq X$ be ii-open set. We will prove that M is open in (X, τ^{ii}) . That is, for all $m \in M$ there exists $O^* \in \tau^{ii}$ such that $m \in O^* \subseteq M$. Since M is ii-open set, it follows that there exists $\phi, X \neq O, K \in \tau$ such that int(M) = O and $M \subseteq Cl(M \cap K)$. Now, for $m \in M$ we have the following two cases:

- (i) $m \in O$.
- (ii) $m \notin O$.

Case (i) $m \in O$. By Theorem 2.1, O is ii-open, so put $O = O^*$ we have, $m \in O^* = O = int(M) \subseteq M$. Thus, M is open in τ^{ii} . Case (ii) $m \notin O$. Consider the following sets, $O_{\circ} = \{m\} \cup O$ and $O_n = \{m\} \cup \{m_i\}_{i=1}^n \cup O, \forall n = 1,2,...$ with $m_i \in M \forall i$. Put $O^* = O_n$ for some $n \in \{0,1,2,...,N\}$. Therefore, it is enough to see that O^* is ii-open. Clearly, $O^* \subseteq Cl(O^* \cap O)$ and $int(O^*) = O$. This implies, $m \in O^* \subseteq M$. Now, since every set in τ^{ii} is open, it follows that τ^{ii} is closed under arbitrary union and finite intersection. This complete the proof.

Remark2.5. Let $M \subseteq X$, then M is ii-open if $M \subseteq Cl(M \cap O)$ and int(M) = K. If we take O = K, then every α —open set is ii-open. Indeed, let M be α —open. If $int(M) = \phi$, then there is nothing to proof. So, $int(M) \neq \phi$ say int(M) = K, that is $M \in \tau^{int}$. Now, since M is α —open we have, $M \subseteq int(Cl(int(M)))$, and therefore, $M \subseteq Cl(int(M)) \subseteq Cl(M \cap K)$. Thus, $M \in \tau^i$. That is, $M \in \tau^{ii}$. Note that, the choosing $O \neq K$ in the definition of ii-open sets has no effect as shown in following example:

Let $X = \{0,1,2,3\}$ and $\tau = \{\phi, \{0\}, \{0,1\}, \{0,1,2\}, \{0,1,3\}, X\}.$

IJSR, VSRP Publishing, UK Website: https://ijsr.vsrp.co.uk

 $\{1,3\}, \{0,2,3\}, \{1,2,3\}, X\}.$

 $\tau^{\alpha} = \tau^{int} \neq \tau, \tau^{ii} = \tau^{int}.$

Conclusions

From above we concluded that ii-open set is a generalization of α –open set and it has the same property that the family of ii-open sets is always a topological space and there is no relation among the inter-open set and i-open set, while all ii-open sets are i-open and int-open.

Acknowledgements

"The Authors are very grateful to the University of Mosul/ College of Education for Pure Sciences for their provided facilities, which helped to improve the quality of this work."

References

- M. E. Abd El-Monsef, S. N. El-Deep & R. A. Mahmood. β-open sets and βcontinuous mappings, *Bull. Fac. Sci. Assiut Univ.* 12 (1983), 77-90.
- [2] B. S., Abdullah, S. W. Askandar and A. A. Mohammed. New Classes of Open Sets in Topological Spaces, *Turkish Journal of Computer and Mathematics Education*, Vol. 13, 3(2022), 247-256.
- [3] D. Andrijevic. On b-open sets. Mat. Vesnik, 38(1996), 59-64.

ISSN 2755-3418 (Online)

108

- [4] S.W., Askandar and A.A. Mohammed. Soft ii-open sets in soft topological spaces, *Open Access Library Journal*, 7(2020), 1-18.
- [5] S. W. Askandar and A. A. Mohammed. Soft ii-Mappings in Soft Topological Spaces. *Italian Journal of Pure and Applied Mathematics*, N. 47(2022), 240-257.
- [6] N. Levine. Semi-open sets and semi-continuity in topological spaces. *The American Mathematical Monthly*, Vol. 70, 1(1963), 36-41.
- [7] A.A., Mohammed, and S.W., Askandar. i-open sets in bi-topological spaces, *Al-Rafidain Journal of Computer Sciences and Mathematics*, Vol. 12, 1(2018), 13-23.
- [8] A.A. Mohammed and B.S. Abdullah. ii-open sets in topological spaces, *International Mathematical Forum*, Vol. 14, 1(2019), 41-48.
- [9] O. Njastad, On some classes of nearly open sets, Pacific Journal of Mathematics, Vol. 15, 3(1965), 961-970.

ISSN 2755-3418 (Online)

109